
Physics 486 Discussion 11 – Angular Momentum : Commutators and Ladder Operators

                                                                                                                     Problem 1 : Commutator Warmup	

Lots of commutators to do today, so let’s start with a warmup of things you’ve seen before, and make a couple 
of important observations. 

(a)  First, make sure these relations are obvious to you.  If not, do some work until they are obvious:

	 	 • Â, Â⎡⎣ ⎤⎦  = 0 i.e. anything commutes with itself

	 	 • Â, B̂ + Ĉ⎡⎣ ⎤⎦ = Â, B̂⎡⎣ ⎤⎦ + Â,Ĉ⎡⎣ ⎤⎦   and  Â + B̂,Ĉ⎡⎣ ⎤⎦ = Â,Ĉ⎡⎣ ⎤⎦ + B̂,Ĉ⎡⎣ ⎤⎦   i.e. commutators are distributive

	 	 • Â, B̂⎡⎣ ⎤⎦ = − B̂, Â⎡⎣ ⎤⎦

(b)  Explicitly calculate the four commutators below.  For expediency, I have stopped putting hats on everything 
because everything is an operator ( x̂ = x ,   p̂x = −i!∂x , etc … where ∂x  is useful shorthand for ∂/ ∂x ).

 	 	 [x, y] ,	 	   [x, px ] ,	 	 [x, py ] ,	 	 [px , py ]

▶ Did you find that three of them are zero and one of them is iℏ?  If you did NOT find that, I am 99% sure of 
what went wrong:  These commutators are commutators of OPERATORS, so the commutators themselves are 
OPERATORS, and WHENEVER you are doing calculations with operators you should provide them with a
FUNCTION TO WORK ON.  (Do you recall this advice from homework and lecture?)  Please try again using 
this technique, and you will for sure succeed! ☺︎  

(c)  After working through the above, make sure that these canonical commutation relations are 100% clear :

	 	
 

[xi , x j ]= 0      [pi , pj ]= 0      [xi , pj ]= i!δ ij 	
     where i, j ∈ {x, y, z}

(d)  After working through part (b), make sure the following statement is also 100% clear :

	 	 ÂB̂,ĈD̂⎡⎣ ⎤⎦  =  B̂ Â,ĈD̂⎡⎣ ⎤⎦  =  Â,ĈD̂⎡⎣ ⎤⎦ B̂  if B̂  commutes with all the other operators ( Â , Ĉ , & D̂ )

To see the obviousness of the above, i.e. that an operator B̂  that commutes with all the others can be freely 
yanked out of a commutator and put anywhere, think of B̂  as the number 8.  8 definitely commutes with 
everything. ☺︎ 

                                                                                                 Problem 2 : Angular Momentum 	 Checkpoints 1

The angular momentum operator is  
!
L = !r × !p .  (I’ve left off the hats again since everything is an operator.)

	 	

 

!̂
L = !̂r × !̂p =

!ex
!ey
!ez

x y z
p̂x p̂y p̂z

    (there, all the hats are back ☺︎).

(a)  Calculate this commutator:  [Lx, Ly].  First, you have to expand Lx and Ly into what you get from the cross 
product, e.g. into terms like x py – y px.  This is a bigger job that in looks like, with many terms.  To complete it 
efficiently, use the distributive property we mentioned in problem 1(a) above to expand the commutator into 
four commutators, then use the properties 1(c) and 1(d) to spot the fact that two of them are zero.  Go for it!

1 Q2  (a) turn the page ☺︎ (c) 0! 



The result is so important that I will put it in a box as well : 
 

[Lx ,Ly ]= i!Lz ,    etc   where “etc” means 
cycle the indices to get the others, like  [Lz ,Lx ]= i!Ly

(b)  Here is a useful theorem:   ÂB̂,Ĉ⎡⎣ ⎤⎦ = Â B̂,Ĉ⎡⎣ ⎤⎦ + Â,Ĉ⎡⎣ ⎤⎦ B̂

Just expand it and two terms will cancel.  This is not something you should memorize (!), rather know that it 
exists and that you can re-derive it in 20 seconds when needed.  For example …

(c)  Now we come to another very important commutator : [L2,Lx ]  where L2 = Lx
2 + Ly

2 + Lz
2 .  

Calculate that one using symmetry as much as you can as well as the part (a) and (b) relations.  
Once you get the result, the results for [L2,Ly ]  and [L2,Lz ] will be obvious, no extra work required!

▶ That result needs a box.  It is because of  [L2,Li ]= 0 , where i ∈ {x, y, z} , that the spherical harmonics
Y l

m θ ,φ( )  can be simultaneous eigenfunctions of the operators L2 and Lz.  Similarly, because [Lx ,Lz ]  and 
[Ly,Lz ]  are NON-zero, the spherical harmonics are NOT eigenfunctions of Lx and Ly.  Whenever you write
down the spherical harmonics, Y l

m θ ,φ( ) , you are implicitly choosing one axis to be the “quantization axis”
with respect to which the m quantum number is defined.  By default this is the z axis, meaning  LzYlm = (m!) Ylm . 

Problem 3 : Welcome to Ladder Operators                                                                                  	 Checkpoints 2

Check out these two operators : L± ≡ Lx ± i Ly .  Strange, these L+ and L– operators … what good are they?  

(a)  To find out, first prove the following : Lz ,L±⎡⎣ ⎤⎦ = c± L±  where c±  is a scalar for you to determine. 

(b)  Now apply the Lz operator to the wavefunction (L± Ylm).  Show that (L± Ylm) is an eigenfunction of Lz and 
find out what its eigenvalue is.  (In math: show that Lz (L± Ylm) = λ± (L± Ylm) and find out what λ± is.) 

(c)  Once you find your result, does it make sense that L± are called the raising & lowering operators for Lz ? 
What IS L± Ylm? i.e. what do these operators DO to the spherical harmonics?  

▶  Raising & lowering operators are also called ladder operators, or step-up & step-down operators, because 
they “step” eigenfunctions up or down the eigenvalue “ladder”.  Say you have an operator Q and you would like 
to find its { eigen-things }.  Well, if you have one e-function of Q and Q’s ladder operators, Q±, you can 
generate the whole e-spectrum by successively applying Q± to your one e-function.  (You can even get that one 
e-function from the ladder ops: insist that the { e-things } must have a “bottom rung” and solve Q– ψbottom = 0.)  
Wow, this sounds like the ideal way to generate eigen-spectra!  Why don’t we use it all the time??  Reason: it is 
not at all trivial to find the ladder operators of Q (!!) and it’s not guaranteed that they exist at all.  There are 
exactly two operators whose ladder ops are easier to find than calculating the { e-spectrum } by another method: 
(1) Lz and (2) the Hamiltonian of the 1D harmonic oscillator.  Seriously, that’s it.  

There’s one more note on the next page, wouldn’t fit here.

2 Q3 (a)  a± = ± ℏ   (b)  λ± = ℏ(m ± 1)   (c)  L± Yl m ~ Yl (m+1).   NOTE that’s a proportional-to sign “~”, it is not an equals sign. Why?  
   The part(b) result is Lz (L± Yl m) = ℏ(m ± 1) (L± Yl m).  In words: (L± Yl m) is an eigenfunction of Lz with eigenvalue ℏ(m ± 1).  
   Eigenfunctions are only ever determined up to a multiplicative constant: Q̂ fq = q fq  means fq is an eigenfunction of operator Q̂  
   with eigenvalue q … but 5 fq works just as well, or π fq, or –2i fq.  Since fq is on both sides of the defining equation Q̂ fq = q fq
   for an eigenfunction of Q̂ , any multiple of fq works just as well as fq.  Some other aspect of your physical system is required to 
   determine the overall normalization of your eigenfunctions.  For QM wavefunctions, the normalization is determined by total 
   probability; for classical coupled-oscillator modes, the normalization is determined by initial conditions; etc.



▶  In class, I advertised ladder operators as the fourth and final utility of commutators in QM.  
Reason: that part (a) commutator [Q, Q±] = c± Q± is the essential property that Q± must possess to be the ladder 
op of Q.  I dearly wish we could find a ladder op for L2 : together with the ladder op for Lz that you just studied, 
we could use it to generate all the spherical harmonics!  That would be very nice … but L² commutes with 
everything!  (well, almost everything)  I’ve never seen a ladder operator for L² … but I also haven’t seen a proof 
that one doesn’t exist.  ¯\_(ツ)_/¯

Here is a recap of the vital roles that commutators play in QM:

	 ● Generalized Uncertainty Principle :  σ Aσ B ≥ 1
2i

Â, B̂⎡⎣ ⎤⎦

	 ● Compatible Operators : ops with common { e-spectra } = ops that commute with each other

	 ● Generalized Ehrenfest Theorem :  
 

d Q̂
dt

= i
!

Ĥ , Q̂⎡⎣ ⎤⎦ + ∂Q̂
∂t

 →  conserved quantities

	 ● Ladder Operators : Q̂±  of Q̂  must satisfy  Q̂, Q̂±⎡⎣ ⎤⎦ = c± Q̂±  where c±  are constant scalars


