Physics 486 Discussion 10 – The Spherical Harmonics

Introduction: Angular Momentum Appears At Last

Last week you used the **3D** Schrödinger equation to solve a problem in (x,y,z) coordinates. Cartesian coordinates are perfectly suited to last week's particle-in-a-box, but in nature, systems tend to display cylindrical or spherical forms rather than rectangular ones. The particular system we are heading for is **the atom**, and clearly spherical coordinates are a much better way to describe the orbitals of atomic electrons! Here is the 3D Schrödinger equation :

$$\hat{H}\Psi(\vec{r}) = \hat{E}\Psi(\vec{r})$$
 where $\hat{H} = \frac{|\vec{p}|^2}{2m} + V(\vec{r}) = -\frac{\hbar^2 \nabla^2}{2m} + V(\vec{r})$

and here are the gradient and the Laplacian in spherical coordinates :

•

$$\vec{\nabla} = \hat{r}\frac{\partial}{\partial r} + \frac{\theta}{r}\frac{\partial}{\partial \theta} + \frac{\phi}{r\sin\theta}\frac{\partial}{\partial \phi} \quad \text{and} \qquad \nabla^2 = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial}{\partial \theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial \phi^2}$$

For most of this class, we will restrict our attention to **central potentials**, where *V* depends <u>only</u> on the coordinate *r*, and so has <u>spherical symmetry</u> (i.e., looks the same from all angles). The electric potential $V(r) = -e/4\pi\epsilon_0 r$ produced by the hydrogen nucleus and seen by the single electron in the hydrogen atom is a perfect example!

Now let's examine the $p^2 = -\hbar^2 \nabla^2$ part of the Hamiltonian, and see how angular momentum appears.

In spherical coordinates, we can decompose momentum into two perpendicular pieces: a radial component p_r and an angular component p_{Ω} .:

$$\vec{p} = \vec{p}_r + \vec{p}_\Omega$$
 with $\vec{p}_r \equiv \hat{r} p_r$ & $\vec{p}_\Omega \equiv \hat{\theta} p_\theta + \hat{\phi} p_\phi$.

Since \vec{p}_r and \vec{p}_{Ω} are perpendicular to each other,

$$p^2 = p_r^2 + p_\Omega^2$$

It's time for a crucial observation. The **angular momentum** relative to the origin produced by a momentum vector \vec{p} is $\vec{L} = \vec{r} \times \vec{p}$. The cross-product picks out the \vec{p} component perpendicular to the radial vector \vec{r} , which is \vec{p}_{Ω} , so the magnitude of the angular momentum is

$$L = r p_{\Omega}$$
.

Thus, $p^2 = p_r^2 + p_{\Omega}^2$ can be written as follows:

$$p^2 = p_r^2 + \frac{L^2}{r^2}.$$

The angular components of momentum, p_{θ} and p_{ϕ} – and *only* the angular components — are now <u>absorbed in L^2 </u>. Now compare the above decomposition of p^2 to the QM operator version of p^2 :

$$p^{2} = -\hbar^{2}\nabla^{2} = -\frac{\hbar^{2}}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial}{\partial r}\right) + \frac{1}{r^{2}}\left[-\frac{\hbar^{2}}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) - \frac{\hbar^{2}}{\sin^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}\right]$$
$$= p_{r}^{2} + \frac{1}{r^{2}}\left[L^{2}(\theta,\phi)\right]$$

All of the angular dependence is in the second term, within the square brackets, so that *must* be L^2 ! It even has

the factor of $1/r^2$ in front of it. \odot The first term must therefore be p_r^2 (and indeed it has no dependence on θ or ϕ , perfect). Here, then, are the operators for the radial and angular pieces of p^2 , and for L^2 :

$$\hat{p}^2 = -\hbar^2 \nabla^2 = \hat{p}_r^2 + \frac{\hat{L}^2}{r^2} \quad \text{where} \quad \left[\hat{p}_r^2 = -\frac{\hbar^2}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) \right] \quad \text{and} \quad \left[\hat{L}^2 = -\hbar^2 \left[\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\phi^2} \right] \right]$$

Problem 1 : Separation of Variables in Spherical Coordinates

Our goal today is to find the eigenstates of the Hamiltonian for **central potentials** V(r) using **spherical coordinates**, i.e. to solve for the functions $\psi_E(r,\theta,\phi)$ that satisfy :

$$\hat{H} \psi_E(r,\theta,\phi) = E \psi_E(r,\theta,\phi)$$
 when $\hat{H} = \frac{\hat{p}^2}{2m} + V(r)$

Using the decomposition of p^2 described in the introduction, the Hamiltonian is

$$2m\hat{H} = \hat{p}_{r}^{2} + \frac{\hat{L}^{2}(\theta,\phi)}{r^{2}} + 2mV(r)$$

We will proceed via separation of variables, in two steps.

Separation #1: Separate the **radial** and **angular** dependences via $\psi(\vec{r}) = R(r)Y(\theta,\phi)$.

(a) Plug the form $\psi(\vec{r}) = R(r)Y(\theta,\phi)$ into the eigenvalue equation $2m\hat{H}\psi = 2mE\psi$ and obtain separated equations for R(r) and $Y(\theta,\phi)$. Use whatever letter you like for your separation constant.

(b) The angular equation you obtained was hopefully

$$\frac{L^2}{\hbar^2} Y(\theta, \phi) = \operatorname{const} \cdot Y(\theta, \phi)$$

What are the <u>units</u> of \hbar ? What are the units of the separation "const"? (Remember from class, there are *two* useful versions of the units of \hbar , pick the most useful one here ¹.)

(c) Our "const" must be positive, since it is the eigenvalue of a positive quantity (L^2 / \hbar^2) so let's call it λ^2 . The previous part also tells us that it must be dimensionless. Our equation is now

$$\frac{\hat{L}^2}{\hbar^2} Y(\theta, \phi) = \lambda^2 Y(\theta, \phi)$$

This is the eigen-equation for L^2 ! The functions $Y(\theta, \phi)$ we seek are the <u>eigenfunctions of L^2 </u>, excellent! These are very important functions and we call them the **spherical harmonics**. It's now time for ...

Separation #2: Separate the **polar** and **azimuthal** dependences via $Y(\theta,\phi) = T(\theta)F(\phi)$.

(c continued) Come up with separated equations for $T(\theta)$ and $F(\phi)$ respectively. Again, use any letter you like as your separation constant.

When you apply the boxed expression above for L^2 , don't expand the first term with the $\partial/\partial \theta$'s, it won't help.

¹ Recap: \hbar has units of (1) **angular momentum** and (2) **energy** × **time**, which are actually the same thing.

(d) Let's deal with the **azimuthal** part first, $F(\phi)$. Your separated equation for $F(\phi)$ should look like this :

 $F''(\phi) = \operatorname{const} \cdot F(\phi)$

Let's call that constant μ , giving us $F''(\phi) = \mu F(\phi)$. Write down the general solution of this equation

- when μ is positive, and
- when μ is negative.

(e) You must now impose a very important physical constraint on $F(\phi)$: since ϕ and $\phi + 2\pi n$ are <u>physically the</u> <u>exact same angle</u>, any function $F(\phi)$ representing a physical system must be **periodic with period** 2π . The function must obey the relation

 $F(\phi + 2\pi n) = F(\phi) \,.$

(If it doesn't, it will be a <u>multivalued</u> function, with different values at the exact same physical angle, and so it cannot represent anything physical.) Consider your general solutions from the previous part and figure out <u>what constraints</u> must you impose on the <u>separation variable μ </u> to satisfy $F(\phi + 2\pi n) = F(\phi)$? HINT: There are *two* constraints. One has to do with the sign of μ , and the other has to do with integers vs real numbers.

(f) The constraints you must impose are that $\mu = -m^2$ where *m* is an integer. Combining this with your general solution from part (d), you should get

$$F(\phi) \sim e^{im\phi}$$
 where $m = 0, \pm 1, \pm 2, \pm 3, ...$

If this is not what you obtained, check part (d) or ask your instructor.

(g) Now we turn to the **polar** function $T(\theta)$. Your separated equation from part (c) for $T(\theta)$ should be :

$$(m^2 - \lambda^2 \sin^2 \theta) T(\theta) = \sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T(\theta)}{\partial \theta} \right)$$

What a horrid equation. Fortunately Professeur Adrien-Marie Legendre has done the work for us. (We will do the derivation in next lecture). It turns out that this equation only has physically acceptable solutions when

•
$$\lambda^2 = l(l+1)$$
 where $l = 0, 1, 2, 3, ...$
• $|m| \le l$ i.e. where $m = -l, -l+1, ..., -1, 0, 1, ..., l-1, l$

When these conditions are satisfied, the solutions $T(\theta)$ to the above equation are the Associated Legendre Functions $P_l^m(\cos\theta)$. When m = 0, you get the regular Legendre Polynomials $P_l(\cos\theta)$. The relation between the two is explained rather well in Jain §11.4, have a look! Griffiths' table of the first few is on the left. When these θ -dependent functions are combined with our ϕ -dependent solutions $F(\phi) \sim \exp(im\phi)$, we get the full angular part of the energy eigenfunction. When normalized, the functions $Y_l^m(\theta, \phi) \sim P_l^m(\cos\theta)e^{im\phi}$ are called the Spherical Harmonics. Griffith's table of the first few of these is on the right.

Table 4.1: Some associated Legendre functions, $P_l^m(\cos \theta)$. **Table 4.2:** The first few spherical harmonics, $Y_l^m(\theta, \phi)$.

$P_1^1 = \sin \theta$	$P^3 = 15\sin\theta(1 - \cos^2\theta)$	$Y_0^0 = \left(\frac{1}{4\pi}\right)^{1/2}$	$Y_2^{\pm 2} = \left(\frac{15}{32\pi}\right)^{1/2} \sin^2 \theta e^{\pm 2i\phi}$
$P_1^0 = \cos \theta$	$P_3^2 = 15\sin^2\theta\cos\theta$ $P^2 = 15\sin^2\theta\cos\theta$	$Y_1^0 = \left(\frac{3}{4\pi}\right)^{1/2} \cos\theta$	$Y_3^0 = \left(\frac{7}{16\pi}\right)^{1/2} (5\cos^3\theta - 3\cos\theta)$
$P_2^2 = 3\sin^2\theta$	$P_3^1 = \frac{3}{5} \sin \theta (5 \cos^2 \theta - 1)$	$Y_1^{\pm 1} = \mp \left(\frac{3}{8\pi}\right)^{1/2} \sin \theta e^{\pm i\phi}$	$Y_3^{\pm 1} = \mp \left(\frac{21}{64\pi}\right)^{1/2} \sin \theta (5\cos^2 \theta - 1)e^{\pm i\phi}$
$P_2^1 = 3\sin\theta\cos\theta$	$P_3^0 = \frac{1}{2} (5 \cos^3 \theta - 2 \cos \theta)$	$Y_2^0 = \left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1)$	$Y_3^{\pm 2} = \left(\frac{105}{32\pi}\right)^{1/2} \sin^2 \theta \cos \theta e^{\pm 2i\phi}$
$P_2^0 = \frac{1}{2}(3\cos^2\theta - 1)$	$r_3 = \frac{1}{2}(3\cos\theta - 3\cos\theta)$	$Y_2^{\pm 1} = \mp \left(\frac{15}{8\pi}\right)^{1/2} \sin\theta \cos\theta e^{\pm i\phi}$	$Y_3^{\pm 3} = \mp \left(\frac{35}{64\pi}\right)^{1/2} \sin^3 \theta e^{\pm 3i\phi}$

To make sure we understand the <u>significance</u> of these spherical harmonics $Y_l^m(\theta, \phi) \sim P_l^m(\cos\theta)e^{im\phi}$, combine the eigenvalue equation for Y in part (c) with the requirement that $\lambda^2 = l(l+1)$. You will find that the spherical harmonic $Y_l^m(\theta, \phi)$ is an **eigenfunction of** L^2 **with eigenvalue** _____. (Fill in the blank, and be sure to check that your units make sense!)

(h) Thus, the quantum number *l* tells us about the state's total angular momentum. What about the quantum number *m*? Here is the operator for the angular momentum vector $\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times (\hbar/i)\vec{\nabla}$ in spherical coords:

$$\frac{i}{\hbar}\vec{L} = \hat{\phi}\frac{\partial}{\partial\theta} - \frac{\hat{\theta}}{\sin\theta}\frac{\partial}{\partial\phi}$$

Make a good sketch of the unit vectors $\hat{\phi}, \hat{\theta}, \hat{z}$ at a random point in space, then figure out the operator $L_z = \vec{L} \cdot \hat{z}$.

.....

Does the sketch at the bottom of the page help you to figure out the operator L_z ? The answer is in the footnote²

(i) Calculate $\hat{L}_z Y_l^m(\theta, \phi) \sim \hat{L}_z P_l^m(\cos\theta) e^{im\phi}$. You should find that the spherical harmonic $Y_l^m(\theta, \phi)$ is an **eigenfunction of L_z with eigenvalue** _____. (You fill in the blank, and check your units!)

(j) Now that you know what the spherical harmonics represent, have a look at the table on the previous page and try <u>sketching</u> a couple of them. Remember that *Y* is the angular part of a wavefunction so its probability density is Y^*Y .

(k) To obtain some more physical intuition, calculate the **probability current density** $\vec{j} = \operatorname{Re}\left[Y_{l}^{m*}\frac{\hat{\vec{p}}}{m}Y_{l}^{m}\right]$ for

these angular wavefunctions. We will talk about this quantity in detail in lecture, but for now, just know that it describes the **flow** of probability represented by a wavefunction. $\rho = \psi * \psi$ and $\vec{j} = \text{Re}\left[\psi^*\left(\hat{\vec{p}}/m\right)\psi\right]$ in QM are the exact analogues of the charge density ρ and current density \vec{j} in E&M, just replace "charge" with "probability". Calculate \vec{j} for two examples: (l, m) = (1, 0) and $(l, m) = (1, \pm 1)$. You will see the influence of the *m* quantum number and its association with L_z very clearly in your result for \vec{j} !

(1) Calculate the **commutator** $[\hat{L}^2, \hat{L}_z]$. What you find should be consistent with the fact that the spherical harmonics $Y_l^m(\theta, \phi)$ constitute a <u>common set of eigenfunctions</u> for both the operator \hat{L}^2 and the operator \hat{L}_z . The relevant principle was presented in lecture: operators that commute have a common set of eigenfunctions.

