
Physics 486 Discussion 10 – The Spherical Harmonics

Introduction:  Angular Momentum Appears At Last 

Last week you used the 3D Schrödinger equation to solve a problem in (x,y,z) coordinates.  Cartesian 
coordinates are perfectly suited to last week’s particle-in-a-box, but in nature, systems tend to display 
cylindrical or spherical forms rather than rectangular ones.  The particular system we are heading for is 
the atom, and clearly spherical coordinates are a much better way to describe the orbitals of atomic electrons! 
Here is the 3D Schrödinger equation :
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For most of this class, we will restrict our attention to central potentials, where V depends only on the 
coordinate r, and so has spherical symmetry (i.e., looks the same from all angles).  The electric potential 
V(r) = –e/4πε0r produced by the hydrogen nucleus and seen by the single electron in the hydrogen atom is a 
perfect example!  

Now let’s examine the  p
2 = −!2∇2  part of the Hamiltonian, and see how angular momentum appears.

In spherical coordinates, we can decompose momentum into two perpendicular pieces: a radial component pr 
and an angular component pΩ.:

	 	  
!p = !pr +

!pΩ         with      
!pr ≡ r̂ pr    &     

!pΩ ≡ θ̂ pθ + φ̂ pφ .  

Since  
!pr  and  

!pΩ are perpendicular to each other, 

	 	 p2 = pr
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2 .  

It’s time for a crucial observation.  The angular momentum relative to the origin produced by a momentum 
vector  

!p  is  
!
L = !r × !p .  The cross-product picks out the  

!p  component perpendicular to the radial vector  
!r , 

which is 
!pΩ , so the magnitude of the angular momentum is 

	 	 L = r pΩ .  
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2  can be written as follows:
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The angular components of momentum, pθ and pφ – and only the angular components— are now absorbed in L2. 
Now compare the above decomposition of p2 to the QM operator version of p² : 

	 	

 

p2 = −!2∇2 = − !
2

r2
∂
∂r

r2 ∂
∂r

⎛
⎝⎜

⎞
⎠⎟ +

1
r2 − !

2

sinθ
∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟ −

!2

sin2θ
∂2

∂φ 2
⎡

⎣
⎢

⎤

⎦
⎥

                   =              pr
2         + 1

r2 L2 (θ , φ)⎡⎣ ⎤⎦

All of the angular dependence is in the second term, within the square brackets, so that must be L2!  It even has 



the factor of 1/r2 in front of it. ☺︎  The first term must therefore be pr
2  (and indeed it has no dependence on 

θ or φ, perfect).  Here, then, are the operators for the radial and angular pieces of p2 , and for L² : 
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Problem 1 : Separation of Variables in Spherical Coordinates

Our goal today is to find the eigenstates of the Hamiltonian for central potentials V(r) using spherical 
coordinates, i.e. to solve for the functions ψE(r,θ,φ) that satisfy : 

	 	 Ĥ ψ E (r,θ ,φ) = Eψ E (r,θ ,φ)        when       Ĥ = p̂2

2m
+V (r) .  

Using the decomposition of p² described in the introduction, the Hamiltonian is

	 	 2m Ĥ = p̂r
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r2
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We will proceed via separation of variables, in two steps. 

____________________________________________________________________________

Separation #1: Separate the radial and angular dependences via   ψ (
!r ) = R(r)Y (θ ,φ) . 

(a)  Plug the form  ψ (
!r ) = R(r)Y (θ ,φ)  into the eigenvalue equation 2m Ĥψ = 2mEψ  and obtain 

separated equations for R(r)  and Y (θ ,φ) .  Use whatever letter you like for your separation constant.

(b)  The angular equation you obtained was hopefully

	 	
 

L̂2

!2
Y (θ ,φ) = const ⋅Y (θ ,φ)

What are the units of  ! ?  What are the units of the separation “const”?  (Remember from class, there are two 
useful versions of the units of  ! , pick the most useful one here 1.)

(c)  Our “const” must be positive, since it is the eigenvalue of a positive quantity ( L2 / !2 ) so let’s call it λ².  
The previous part also tells us that it must be dimensionless.  Our equation is now

	 	
 

L̂2

!2
Y (θ ,φ) = λ 2Y (θ ,φ) .

This is the eigen-equation for L²!  The functions Y(θ,φ) we seek are the eigenfunctions of L2, excellent!  
These are very important functions and we call them the spherical harmonics.  It’s now time for … 

____________________________________________________________________________

Separation #2: Separate the polar and azimuthal dependences via  Y (θ ,φ) = T (θ )F(φ) .  

(c continued)  Come up with separated equations for T(θ) and F(φ) respectively.  Again, use any letter you like 
as your separation constant.
▶ When you apply the boxed expression above for L2, don’t expand the first term with the ∂/∂θ’s, it won’t help.

1 Recap: ℏ has units of (1) angular momentum and (2) energy × time,  which are actually the same thing.



(d)  Let’s deal with the azimuthal part first, F(φ).  Your separated equation for F(φ) should look like this : 

	 	 ′′F (φ) = const ⋅F(φ)  
Let’s call that constant μ, giving us ′′F (φ) = µF(φ) .  Write down the general solution of this equation 
	 • when μ is positive, and 
	 • when μ is negative. 

(e)  You must now impose a very important physical constraint on F(φ):  since φ and φ + 2π n are physically the 
exact same angle, any function F(φ) representing a physical system must be periodic with period 2π.  
The function must obey the relation 

	 	 F(φ + 2πn) = F(φ) .

(If it doesn’t, it will be a multivalued function, with different values at the exact same physical angle, and so it 
cannot represent anything physical.)  Consider your general solutions from the previous part and figure out 
what constraints must you impose on the separation variable μ to satisfy F(φ + 2π n) = F(φ)?  HINT: There are 
two constraints.  One has to do with the sign of μ, and the other has to do with integers vs real numbers. 

(f)  The constraints you must impose are that μ = –m2 where m is an integer.  Combining this with your general 
solution from part (d), you should get

	 	 F(φ) ~ eimφ   where m = 0, ±1, ±2, ±3, …

If this is not what you obtained, check part (d) or ask your instructor.

(g)  Now we turn to the polar function T(θ).  Your separated equation from part (c) for T(θ) should be : 
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What a horrid equation.  Fortunately Professeur Adrien-Marie Legendre has done the work for us. (We will do 
the derivation in next lecture).  It turns out that this equation only has physically acceptable solutions when

	
• λ 2 = l (l +1)  where l = 0, 1, 2, 3,...
• m ≤ l      i.e. where m = −l, − l+1, ... , −1, 0, 1, ... , l−1, l  

When these conditions are satisfied, the solutions T(θ) to the above equation are the Associated Legendre 
Functions Pl

m(cosθ ).  When m = 0, you get the regular Legendre Polynomials Pl (cosθ ) .  The relation 
between the two is explained rather well in Jain §11.4, have a look!  Griffiths’ table of the first few is on the left. 
When these θ-dependent functions are combined with our φ-dependent solutions F(φ) ~ exp(imφ), we get the 
full angular part of the energy eigenfunction.  When normalized, the functions Y l

m (θ , φ) ~ Pl
m (cosθ )eimφ  are 

called the Spherical Harmonics.  Griffith’s table of the first few of these is on the right.



To make sure we understand the significance of these spherical harmonics Y l
m (θ , φ) ~ Pl

m (cosθ )eimφ ,  
combine the eigenvalue equation for Y in part (c) with the requirement that λ 2 = l (l +1) .  You will find 
that the spherical harmonic Y l

m (θ , φ)  is an eigenfunction of L2 with eigenvalue _______.  (Fill in the blank, 
and be sure to check that your units make sense!)

(h)  Thus, the quantum number l tells us about the state’s total angular momentum.  What about the quantum 
number m?  Here is the operator for the angular momentum vector  

!
L = !r × !p = !r × " / i( )

!
∇  in spherical coords:
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Make a good sketch of the unit vectors φ̂,θ̂ , ẑ  at a random point in space, then figure out the operator  Lz =
!
L ⋅ ẑ .

………………………………...

Does the sketch at the bottom of the page help you to figure out the operator Lz?  The answer is in the footnote2

(i)  Calculate L̂z Y l
m (θ ,φ) ~ L̂z Pl

m (cosθ )eimφ .  You should find that the spherical harmonic Y l
m (θ , φ)  is an 

eigenfunction of Lz with eigenvalue _______.  (You fill in the blank, and check your units!)

(j)  Now that you know what the spherical harmonics represent, have a look at the table on the previous page 
and try sketching a couple of them.  Remember that Y is the angular part of a wavefunction so its probability 
density is Y*Y.  

(k)  To obtain some more physical intuition, calculate the probability current density 
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these angular wavefunctions.  We will talk about this quantity in detail in lecture, but for now, just know that it 
describes the flow of probability represented by a wavefunction.  ρ =ψ *ψ  and 

 

!
j = Re ψ * !̂p /m( )ψ⎡

⎣
⎤
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are the exact analogues of the charge density ρ  and current density  
!
j  in E&M, just replace “charge” with 

“probability”.  Calculate  
!
j  for two examples: (l, m) = (1, 0) and (l, m) = (1, ±1).  You will see the influence of 

the m quantum number and its association with Lz very clearly in your result for  
!
j ! 

(l)  Calculate the commutator L̂2, L̂z⎡⎣ ⎤⎦ .  What you find should be consistent with the fact that the spherical 
harmonics Y l

m (θ , φ)  constitute a common set of eigenfunctions for both the operator L̂ 2  and the operator L̂z .
The relevant principle was presented in lecture:  operators that commute have a common set of eigenfunctions. 
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