
Physics 486 Discussion 8 – 3D-Cartesian  ;  Momentum-Basis Operators 
Time to move to 3D!  The Schrödinger equation gets the smallest of changes: 

● position : 	    the 1D position coordinate x becomes the 3D position vector  
!r = x̂ x + ŷ y + ẑ z .

● momentum : the 1D operator p̂x = −i! ∂
∂x

 becomes the 3D operator !̂p = −i"
!
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The Schrödinger equation therefore becomes 

ĤΨ(!r ) = ÊΨ(!r )       where     Ĥ =
!p 2

2m
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2∇2

2m
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In Cartesian coordinates, the gradient and the Laplacian are
!
∇ = x̂ ∂

∂x
+ ŷ ∂

∂y
+ ẑ ∂
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and		 ∇2 = ∂2
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∂z2
   respectively.

Problem 1 : 3D Particle in a Box	 Griffiths 4.2, Checkpoints 1

Use separation of variables in Cartesian coordinates to solve the infinite cubical well (or “particle in a box”):

V (x, y, z) = 0    if x,  y,  z are all between 0 and a
∞    otherwise

⎧
⎨
⎪

⎩⎪

(a)  Find the energy eigenstates ψ(x,y,z) and the corresponding energies.  

(b)  Call the distinct energies E1, E2, E3, …, in order of increasing energy.  Find the energies E1 through E6. 

(c)  Determine the degeneracies of the first 6 energies (i.e., find the number ni of different states that share the 
same energy Ei ).  

FYI: In one dimension, degenerate bound states do not occur, but in three dimensions they are very common.    

Problem 2 : Momentum-Basis Operators	 adapted from Griffiths 3.12

We have learned that an x-dependent wavefunction ψα(x) is really a representation of a state α  in a
particular basis, namely the basis of position eigenstates ex :

ψα (x) = ex α

The wavefunction ψα (x) = ex α  is the set of coefficients of the state α  along the basis elements { ex },
in the same way that    (v1, v2, v3)  is the set of coefficients of the vector  

!v  along the basis elements { ê1, ê2, ê3  }.

▶ IMPORTANT:  It is VITAL to realize that the state | α > of a quantum system is NOT NECESSARILY AN
EIGENFUNCTION OF  ANYTHING.  It can always be written as a SUPERPOSITION OF EIGENSTATES of 
some Hermitian operator(s), but is not necessarily in a single eigenstate of any operator.  Since we spend so 
much time determining energy eigenstates, and since we are so used to energy being a constant in classical 
mechanics, it is a particularly common misconception that a system must always be in an energy eigenstate ... 
but that is ABSOLUTELY NOT TRUE.  Think of the most realistic representation we have seen of a moving 
free electron : the moving Gaussian wave packet.  That wave packet was concentrated at a particular 

1 Q1 (a) ψ (x, y, z) = 2 / a( )3/2 sin nxπ x / a( )sin nyπ y / a( )sin nzπ z / a( ) ,   E = π 2!2 (nx
2 + ny

2 + nz
2 ) / (2ma2 )  for nx, ny, nz = 1, 2, 3, …

(b) E{1,2,3,4,5,6} = π² ℏ² / (2ma²) · { 3, 6,  9, 11, 12, 14 }    (c) degeneracies d {1,2,3,4,5,6} = { 1, 3, 3, 3, 1, 6 }



momentum, and therefore energy, but its Fourier transform was also a Gaussian, indicating that it was spread 
across many momenta, and therefore many energies.  

(a) We did this part in lecture today; do (a) to get caught up if you missed lecture. 
We can build different wavefunctions to represent a state α  by projecting it onto different bases.
Specifically, we can build a wavefunction ψα (q)  in the eigenspace { eq } of any Hermitian operator Q, 
since Hermitian operators always have complete eigenspaces.  In class we concentrated on transforming 
wavefunctions from position-basis to momentum-basis.  Show that the general rule to transform of an x-basis 
wavefunction ψ(x) to a q-basis wavefunction φ(q) describing the same state is :

φ(q) = ψ q*(x)ψ (x) dx∫
where {q} are the eigenvalues of a Hermitian operator Q, 
and ψ q(x) denotes the eigenfunction of Q with eigenvalue q.

▶ STRATEGY: Go to Dirac notation straight away, and make good use of the completeness relation

ey ey = 1
y
∑  for a discrete set of eigenvalues {y}      or dy ey ey = 1∫  for a continuous set .

▶ IMPORTANT : Recall that this basis-switching is not just a mathematical curiosity; the extreme usefulness of
changing the basis of a wavefunction ψ(x) is that ψ(x)*ψ(x) gives you the probability density P(x) of finding 
the system at position x … and so φ(q)*φ(q) gives you the probability density P(q) of finding it at the 
eigenvalue q of any other observable Q : i.e. 

P(q) = eq α
2
= φα (q)

2

as we wrote down last week.  No longer are we constrained to simply obtain the expectation value < Q > and 
variances < Q² > from a quantum wavefunction, we can now obtain complete probability distributions for any 
observable Q. 

(b)  In the position basis, the operators for position x, momentum p, and any dynamical property Q(x, p) are :

x̂ = x ,	 p̂ = !
i
∂
∂x

,	 Q̂ =Q x, !
i
∂
∂x

⎛
⎝⎜

⎞
⎠⎟ .

What are the corresponding operators in the momentum-basis, i.e. with p as the independent variable instead of 
x?  The operator for momentum itself is clearly just p, but what is the p-dependent operator for x?  What a mind-
bending question! ☺︎ It turns out the answer is

p̂ = p ,	 x̂ = − !
i
∂
∂p

,	 Q̂ =Q − !
i
∂
∂p
, x⎛

⎝⎜
⎞
⎠⎟

Where did that x̂  come from??  To show that the position operator in momentum space is indeed the one given above, 
prove that the expectation value of position is

x = Φ*(p) − !
i

∂
∂p

⎛
⎝⎜

⎞
⎠⎟
Φ(p) dp∫

HINT #1: Start with the formula you know for < x >.  
HINT #2 : Notice that  x exp(ipx / !) = −i!(d / dp) exp(ipx / !) .

▶ FYI: In principle, you can do all calculations in momentum space instead of position space (though not always as
easily).  It is an interesting mental exercise to look at the quantum world as if p, not x, is the independent variable for your 
wavefunctions i.e. the basis in which you think.  Try viewing the world through momentum-coloured glasses.   8-)


