
Physics 486 Discussion 7 – Formalism

Problem 1 : Sequential Measurements 	 adapted from Griffiths 3.27; Checkpoints 1

In this problem, we will perform some quantum calculations using only the generalized mathematical language 
of inner product spaces: kets for states, bra-kets for inner products, letters with hats for operators.  We will not 
use any particular representation of the states and operators at all: no wavefunctions or differential operators, 
no column vectors or matrices, just kets and Q̂s .  This language is perfectly suited to the axioms of QM!  ☺︎ 

Consider operators Â  and B̂ .  The eigenstates of operator Â  are | ψ1 〉 and | ψ2 〉.  These are the ONLY two 
eigenstates → we are considering a small, two-dimensional space spanned by exactly two eigenstates as it 
makes a good sandbox in which to play and learn. ☺︎   The eigenstates of operator B̂  are | φ1 〉 and | φ2 〉and are 
orthonormal, i.e. the | φ 〉’s are each normalized to 1 and | φ1 〉 is orthogonal to | φ2 〉.  As have learned, in the 
generalized notation of inner product spaces, this orthonormality condition is written : 

	 	 〈φi | φj 〉 = δij.  

The corresponding eigenvalues are a1, a2 for operator Â  and b1, b2 for operator B̂ .  Finally, the eigenstates of 
the two different operators are related to each other in the following way: 

	 	 ψ 1 =
3 φ1 + 4 φ2

5
     and      ψ 2 =

4 φ1 − 3 φ2
5

.

(a)  Using the fact that | φ1,2 〉  are orthonormal, show that | ψ2 〉 is also normalized, and that | ψ1 〉 and | ψ2 〉 are 
orthogonal to each other.

(b)  Write the eigenstates | φ1,2 〉 in terms of the eigenstates | ψ1,2 〉.  

(c)  An experiment is performed to measure the observable A.  The measurement yields the value a1.  What is 
the state of the system immediately after this measurement?  
Something new:  We now introduce a very important formula that we didn’t quite get to in class yet, which is 
the master formula for probability : 

	 	 Prob(q) = eq ψ
2

       
In words:   If a system is in state ψ  and we measure an observable Q̂,
the probability of obtaining the eigenvalue q is calculated by projecting
the state ψ  onto the eigenstate eq  and taking the norm-squared.

(d)  The observable B is now measured (i.e. after A was measured to be a1).  What are the possible results and 
what are their probabilities?  
(e)  Right after the measurement of B, A is measured again.  What is the probability of getting the same value a1 
as in part (c)?  
(f)  What if, in part (d), the result of measurement B was found to be b2; what is the possibility of getting a1 in 
this case?  

(g)  Recall the definition of a commutator : Â, B̂⎡⎣ ⎤⎦ ≡ Â B̂ − B̂ Â .  Calculate Â, B̂⎡⎣ ⎤⎦ψ 1 .  Do A and B commute?

▶  Looking ahead: Commutators appear again!  (The first time was in last week’s discussion.)  As we will 
shortly learn, operators that don’t commute with each other – as in this exercise – are called incompatible 

1  Q1 (b) φ1 = 3 ψ 1 + 4 ψ 2( ) / 5 ,  φ2 = 4 ψ 1 − 3 ψ 2( ) / 5     (c)  ψ 1     
	 (d) P(b1) = 9/25 = 36% and P(b2) = 16/25 =64%  (e) P(a1) = 337/625 = 53.9% (f) P(a1) = 16/25  (g) 12/25 (a1 – a2)(b2 – b1) | ψ2·〉



observables because the measurement of one affects the value of the other.  The best-known pair of 
incompatible observables is x̂  & p̂x .  Just like for position and momentum, every pair of incompatible 
observables has an associated uncertainty principle.     

Problem 2 : Matrix Representation of States and Operators 	 Griffiths 3.37; Hints & Checkpoints 2

In today’s lecture, we learned about the matrix representation of QM states and operators, which is an 
alternative to the wavefunction representation that we have been using to date.  A quick formula summary:

	 	 ● QM states are represented as column vectors with components   ψ i = ei ψ

	 	 ● QM operators are represented as matrices with components        Qij = ei Q̂ ej

	 	 ● The inner product between two states is calculated as follows:     
 
f g =

!
f *T !g = f i*gi

Now for some practice!  
The Hamiltonian for a certain 3-level system is represented by the following matrix :

	 	 H =
a 0 b
0 c 0
b 0 a

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟    where a, b, and c are real numbers.  (Assume a – c ≠ ±b).

Find the system’s state at time t > 0 if the system starts in state  (a) 
0
1
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟   (b) 

0
0
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟   at t = 0.

▶ GUIDANCE: The matrix representation is new, so please do consult the step-by-step hints in the footnote if 
you are stuck or uncertain!

2  Q2  Hints: You know how to do time-evolution: express the starting state as a linear combination of the system’s energy eigenstates 
	 … so you must first find the eigenvectors and eigenvalues of the given Hamiltonian matrix 
	 … the fastest way to do that, if possible, is to guess the form of the eigenvectors and try them out to find the eigenvalues → look 
	      at the form of H and guess; and once you have one or two of the eigenvectors, remember that a Hermitian matrix like 
        our H has orthogonal eigenvectors, very helpful! 

	 (a) 
 
Ψ(t ) = e− i ct /!

0
1
0

⎛

⎝⎜
⎞

⎠⎟
     (b)  

 

Ψ(t ) = e− i at /!
−i sin(bt / !)

0
cos(bt / !)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟


