Physics 486 Discussion 7 – Formalism

Problem 1: Sequential Measurements

adapted from Griffiths 3.27; Checkpoints

In this problem, we will perform some quantum calculations using only the generalized mathematical language of inner product spaces: kets for states, bra-kets for inner products, letters with hats for operators. We will not use any particular representation of the states and operators at all: no wavefunctions or differential operators, no column vectors or matrices, just kets and \(\hat{Q} \)s. This language is perfectly suited to the axioms of QM! ☝️

Consider operators \(\hat{A} \) and \(\hat{B} \). The eigenstates of operator \(\hat{A} \) are \(|\psi_1\rangle \) and \(|\psi_2\rangle \). These are the ONLY two eigenstates \(\Rightarrow \) we are considering a small, two-dimensional space spanned by exactly two eigenstates as it makes a good sandbox in which to play and learn. ☺️ The eigenstates of operator \(\hat{B} \) are \(|\phi_1\rangle \) and \(|\phi_2\rangle \) and are orthonormal, i.e. the \(|\phi\rangle \)'s are each normalized to 1 and \(|\phi_1\rangle \) is orthogonal to \(|\phi_2\rangle \). As have learned, in the generalized notation of inner product spaces, this orthonormality condition is written:

\[
\langle \phi_i | \phi_j \rangle = \delta_{ij}.
\]

The corresponding eigenvalues are \(a_1, a_2 \) for operator \(\hat{A} \) and \(b_1, b_2 \) for operator \(\hat{B} \). Finally, the eigenstates of the two different operators are related to each other in the following way:

\[
|\psi_1\rangle = \frac{3|\phi_1\rangle + 4|\phi_2\rangle}{5} \quad \text{and} \quad |\psi_2\rangle = \frac{4|\phi_1\rangle - 3|\phi_2\rangle}{5}.
\]

(a) Using the fact that \(|\phi_{1,2}\rangle \) are orthonormal, show that \(|\psi_2\rangle \) is also normalized, and that \(|\psi_1\rangle \) and \(|\psi_2\rangle \) are orthogonal to each other.

(b) Write the eigenstates \(|\phi_{1,2}\rangle \) in terms of the eigenstates \(|\psi_{1,2}\rangle \).

(c) An experiment is performed to measure the observable \(A \). The measurement yields the value \(a_1 \). What is the state of the system immediately after this measurement?

Something new: We now introduce a very important formula that we didn’t quite get to in class yet, which is the master formula for probability:

\[
\text{Prob}(q) = |\langle e_q | \psi \rangle|^2
\]

In words: If a system is in state \(|\psi\rangle \) and we measure an observable \(\hat{Q} \), the probability of obtaining the eigenvalue \(q \) is calculated by projecting the state \(|\psi\rangle \) onto the eigenstate \(|e_q\rangle \) and taking the norm-squared.

(d) The observable \(B \) is now measured (i.e. after \(A \) was measured to be \(a_1 \)). What are the possible results and what are their probabilities?

(e) Right after the measurement of \(B \), \(A \) is measured again. What is the probability of getting the same value \(a_1 \) as in part (c)?

(f) What if, in part (d), the result of measurement \(B \) was found to be \(b_2 \); what is the possibility of getting \(a_1 \) in this case?

(g) Recall the definition of a commutator: \([\hat{A}, \hat{B}] \equiv \hat{A}\hat{B} - \hat{B}\hat{A} \). Calculate \([\hat{A}, \hat{B}]|\psi_1\rangle \). Do \(A \) and \(B \) commute?

► Looking ahead: Commutators appear again! (The first time was in last week’s discussion.) As we will shortly learn, operators that don’t commute with each other – as in this exercise – are called incompatible

\[
\text{Q1 (b)} \quad |\phi_1\rangle = \left(\frac{3}{5}|\psi_1\rangle + \frac{4}{5}|\psi_2\rangle \right) \quad |\phi_2\rangle = \left(\frac{4}{5}|\psi_1\rangle - \frac{3}{5}|\psi_2\rangle \right) \\
\text{(c)} \quad |\psi_1\rangle \\
\text{(d)} \quad \text{P}(b_1) = 9/25 = 36\% \quad \text{and} \quad \text{P}(b_2) = 16/25 = 64\% \\
\text{(e)} \quad \text{P}(a_1) = 337/625 = 53.9\% \\
\text{(f)} \quad \text{P}(a_1) = 16/25 \\
\text{(g)} \quad 12/25 \:\left(a_1 - a_2 (b_2 - b_1) \right) |\psi_2\rangle
\]
observables because the measurement of one affects the value of the other. The best-known pair of incompatible observables is \(\hat{x} \) & \(\hat{p}_x \). Just like for position and momentum, every pair of incompatible observables has an associated uncertainty principle.

Problem 2 : Matrix Representation of States and Operators
Griffiths 3.37; Hints & Checkpoints

In today’s lecture, we learned about the **matrix representation** of QM states and operators, which is an alternative to the **wavefunction representation** that we have been using to date. A quick formula summary:

- **QM states** are represented as **column vectors** with components \(\psi_i = \langle e_i | \psi \rangle \)

- **QM operators** are represented as **matrices** with components \(Q_{ij} = \langle e_i | \hat{O} | e_j \rangle \)

- The **inner product** between two states is calculated as follows: \(\langle f | g \rangle = \hat{f}^*^T \hat{g} = f_i^* g_i \)

Now for some practice!

The Hamiltonian for a certain 3-level system is represented by the following matrix :

\[
H = \begin{pmatrix}
 a & 0 & b \\
 0 & c & 0 \\
 b & 0 & a
\end{pmatrix}
\]

where \(a, b, \) and \(c \) are real numbers. (Assume \(a - c \neq \pm b \)).

Find the system’s state at time \(t > 0 \) if the system starts in state

(a) \[
\begin{pmatrix}
 0 \\
 1 \\
 0
\end{pmatrix}
\]

(b) \[
\begin{pmatrix}
 0 \\
 0 \\
 1
\end{pmatrix}
\]

at \(t = 0 \).

➤ **GUIDANCE:** The matrix representation is new, so please do consult the step-by-step hints in the footnote if you are stuck or uncertain!

\[2\] Q2 Hints: You know how to do time-evolution: express the starting state as a linear combination of the system’s **energy eigenstates** … so you must first find the eigenvectors and eigenvalues of the given Hamiltonian matrix … the fastest way to do that, if possible, is to **guess** the form of the eigenvectors and **try them out** to find the eigenvalues → look at the form of \(H \) and guess; and once you have one or two of the eigenvectors, remember that a Hermitian matrix like our \(H \) has **orthogonal** eigenvectors, very helpful!

(a) \[
\Psi(t) = e^{-ict/h} \begin{pmatrix}
 0 \\
 1 \\
 0
\end{pmatrix}
\]

(b) \[
\Psi(t) = e^{-iat/h} \begin{pmatrix}
 -i \sin(bt/h) \\
 0 \\
 \cos(bt/h)
\end{pmatrix}
\]