Phys 486 Discussion 6 - Ehrenfest's Theorem

Below is a summary of the axioms of QM from this week's lectures. The axioms will be revised a bit when we introduce more mathematics, and a $6^{\text {th }}$ axiom will be added when we learn about multiple identical particles.

- STATE axiom: A particle's state is described by a complex-valued wavefunction $\psi(x, t)$ that is normalized so that the probability of finding the particle somewhere is 1 :

$$
1=\int_{-\infty}^{+\infty}|\psi(x, t)|^{2} d x, \quad \text { which requires that } \psi(x, t) \text { goes to zero at } x= \pm \infty \text { faster than } \frac{1}{\sqrt{x}} .
$$

- PROBABILITY axiom: The magnitude squared of the wavefunction, $|\psi|^{2} \equiv \psi^{*} \psi$, represents the probability $\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{t})$ of finding the particle at location x at a particular time t :

$$
P(x, t) d x=|\psi(x, t)|^{2} d x \equiv \psi^{*}(x, t) \psi(x, t) d x
$$

Further, when we measure a dynamical property Q of the particle at a particular time t, the expectation value $\langle Q\rangle \equiv$ the average value that we will obtain is

$$
\langle Q(t)\rangle=\int_{-\infty}^{+\infty} \psi^{*}(x, t) \hat{Q} \psi(x, t) d x
$$

- OBSERVABLES axiom: Each dynamical ${ }^{\mathbf{1}}$ property Q of a particle is associated with an operator \hat{Q} that acts on ψ. The position and momentum, from which all others can be built, are:

$$
\hat{x}=x, \quad \hat{p}_{x}=-i \hbar \frac{\partial}{\partial x}
$$

The eigenstates ${ }^{2}$ of \hat{Q} (notation: ψ_{q}) are the only states with definite \boldsymbol{Q}, i.e. the only states where the observable Q has a specific, unique value, which is the eigenvalue q. For all other states, any eigenvalue of \hat{Q} can be measured, with a probability distribution $P(q)$ that can be calculated from the wavefunction (coming up).

- MEASUREMENT axiom: If we measure a dynamical property Q of a system, the only values that we can obtain are the eigenvalues \boldsymbol{q} of the associated operator \hat{Q}. Once a particular value q has been measured, the state of the system changes instantaneously into the eigenstate ψ_{q}.
- TIME EVOLUTION axiom: The wavefunction $\psi(x, t)$ of a non-relativistic particle of mass m in a potentialenergy field $V(x)$ evolves with time according to the Schrödinger Equation (SE) :

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V \psi, \quad \text { or using operator symbols, } i \hbar \frac{\partial \psi}{\partial t}=\hat{H} \psi=\left(\frac{\hat{p}^{2}}{2 m}+V\right) \psi
$$

where $H=T+V$ is the particle's Hamiltonian.

Problem 1 : Ehrenfest's Theorem

Ehrenfest's Theorem is a hugely important result of the QM axioms :

> Expectation Values Obey Classical Laws.

Wow! We must explore this further! The theorem has multiple incarnations, all of which are important.

[^0](a) First, you need to do some calculus. Using Schrödinger's equation, show this important result :
$$
i \hbar \frac{\partial}{\partial t}\left[\psi^{*} \psi\right]=-\frac{\hbar^{2}}{2 m} \frac{\partial}{\partial x}\left[\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right]+\left(V-V^{*}\right) \psi^{*} \psi
$$

It is really useful for several derivations but requires a non-trivial amount of work. Also, for the subsequent calculations, assume that the potential energy \boldsymbol{V} is real. This removes the second term above. We will treat other cases soon enough, but for now, only consider real potential energies.
(b) Now consider the expectation value of position for a wavefunction ψ :

$$
\langle x(t)\rangle=\int_{-\infty}^{+\infty} \psi^{*}(x, t) x \psi(x, t) d x
$$

This is the average position you would obtain if you prepared a huge ensemble of particles, each in state $\psi(x, t)$, and measured the position of each one at time $t .\langle\mathrm{x}\rangle$ is the statistical average of all those position measurements. OK, so now let's try building an expectation value for speed : $\langle\mathrm{v}\rangle=\mathrm{d}\langle\mathrm{x}\rangle / \mathrm{dt}$. Using integration-by-parts show that

$$
\frac{d\langle x\rangle}{d t}=-\frac{i \hbar}{2 m} \int_{-\infty}^{+\infty}\left[\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right] d x
$$

(c) Using one more integration-by-parts, and the fact that all normalizable wavefunctions go to zero at infinity (see axiom 2) show that

$$
\frac{d\langle x\rangle}{d t}=-\frac{i \hbar}{m} \int_{-\infty}^{+\infty} \psi^{*} \frac{\partial \psi}{\partial x} d x=\frac{\langle p\rangle}{m} \rightarrow \quad \text { Ehrenfest incarnation \#1: } \frac{d\langle x\rangle}{d t}=\frac{\langle p\rangle}{m}
$$

This is very nice indeed! The expectation = average values of momentum and position do indeed behave like their classical counterparts! ©
(d) Now use the various tricks you have amassed to prove this:

Ehrenfest incarnation \#2: $\frac{d\langle p\rangle}{d t}=\left\langle-\frac{d V}{d x}\right\rangle$
That is Newton's EOM " $F=d p / d t$ " reincarnated using expectation values! Very nice. ©
FYI \#1: A third incarnation can be found in Problem 4.20 of Griffith's book, namely the torque law:
Ehrenfest incarnation \#3: $\frac{d\langle\vec{L}\rangle}{d t}=\langle\vec{r} \times-\vec{\nabla} V\rangle$.
FYI \#2: There is an exceedingly important generalization of Ehrenfest's theorem(s) that applies to any quantum observable Q. We will need it in a while to search for a system's constants of motion :

Generalized Ehrenfest : $\frac{d\langle Q\rangle}{d t}=\frac{1}{i \hbar}\langle[Q, H]\rangle+\left\langle\frac{\partial Q}{\partial t}\right\rangle$
(Apparently this was proved by Heisenberg, but I've only ever heard it called "Ehrenfest's Theorem".) This formula is our first encounter with the commutator of two operators : $[\hat{Q}, \hat{H}] \equiv \hat{Q} \hat{H}-\hat{H} \hat{Q}$. Commutators play a crucial role in quantum mechanics, and one of those crucial roles is this formula!

[^0]: ${ }^{1}$ A dynamical property is one that can change with time. These are the properties that have operators in QM. In contrast, an intrinsic property is one that can never change, like a particle's mass or charge; these are not associated with any operators in QM.
 ${ }^{2}$ In case you have forgotten, the definition of an eigenstate ψ_{q} of an operator \hat{Q} is: $\hat{Q} \psi_{q}=q \psi_{q}$, where q is the eigenvalue.

