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Introduction

Inline math can be included as follows: f(x) = αx4.
Numbered equations can be generated as follows:

f(x) = γx2 (1)

and referenced as Eqn 1.
We can reference a figure similarly to an equation: Fig 1.

Figure 1: Figures can be included and referenced in this way.
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1 Example homework problem: Simons problem 2.1

1.1 Classical Einstein or ”Boltzmann” solid

Problem statement. Consider a three-dimensional simple harmonic oscillator with mass m and spring con-
stant k. The Hamiltonian is given by.

H =
p2

2m
+
k

2
x2 (2)

1.1.1 Calculate the classical partition function

.

Z =

∫
dp

(2πh̄)3

∫
dxe−βH(p,x) (3)

Solution: Substituting in for H,

Z =

∫
dp

(2πh̄)3

∫
dxe
−β

(
p2

2m + k
2 x

2
)
. (4)

Since eA+B = eAeB ,

Z =

∫
dp

(2πh̄)3
e
−β

(
p2

2m

) ∫
dxe−β( k

2 x
2). (5)

We can evaluate this integral from tables, which we can obtain as∫
e−αx

2

d3x =
(π
α

)3/2

. (6)

So,

Z =
1

(2πh̄)3

(
2mπ

β

2π

kβ

)3/2

≡ Cβ−3, (7)

where we have defined C as the constant in front of β.

1.1.2 Calculate the heat capacity and show that it is equal to 3kB.

Solution: Since no volume enters into this model, we take the heat capacity to be the constant volume heat
capacity,

CV ≡
∂U

∂T
(8)

The average energy is given by

U =
1

Z

∫
H(p, x)e−βH(p,x) = − 1

Z

∂Z

∂β
(9)

= − 1

Cβ−3
(−3)Cβ−4 (10)

= 3β−1 = 3kBT (11)

Plugging this back into our expression for CV , we get CV = 3kB .
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1.1.3 Heat capacity for a solid of N harmonic wells

Conclude that if you can consider a solid to consist of N atoms all in harmonic wells, then the heat capacity
should be 3NkB = 3R.

Solution: For a single harmonic oscillator, we computed the internal energy as U = 3kBT . Since internal
energy is extensive, for N harmonic oscillators, the internal energy must be given as U = 3NkBT . Therefore,
CV = 3kBT , in accordance with the law of Dulong and Petit.

1.2 Quantum Einstein solid

Now consider the same Hamiltonian quantum-mechanically.

1.2.1 Calculate the quantum partition function

Solution: The partition function is

Z =

∞∑
nx=0

∞∑
ny=0

∞∑
nz=0

e−βh̄ω(nx+ny+nz+3/2) (12)

This is separable into

Z =

∞∑
nx=0

e−βh̄ω(nx+1/2

 ∞∑
ny=0

e−βh̄ω(ny+1/2

( ∞∑
nz=0

e−βh̄ω(nz+1/2

) (13)

Using the identity

∞∑
nz=0

e−βh̄ω(nz+1/2 = (2 sinh(βh̄ω/2))
−1

(14)

we obtain

Z = (2 sinh(βh̄ω/2))
−3

(15)

1.2.2 Explain the relationship with Bose statistics

Solution: The number of quanta in each mode is the same as the Bose-Einstein distribution.

1.2.3 Heat Capacity

Solution: As we noted above, we need ∂Z
Z∂β . Through multiple applications of the chain rule, we arrive to

∂Z

∂β
= −3 (2 sinh(βh̄ω/2))

−4
2 cosh(βh̄ω/2)h̄ω/2 (16)

= −3h̄ω (2 sinh(βh̄ω/2))
−4

cosh(βh̄ω/2) (17)

So

U = − ∂Z

Z∂β
= 3h̄ω (2 sinh(βh̄ω/2))

−1
cosh(βh̄ω/2) (18)

=
3

2
h̄ω coth(βh̄ω/2), (19)

where we used the identity coth(x) = cosh(x)/ sinh(x).
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Figure 2: Heat capacity of an Einstein solid as a function of temperature

Now to obtain CV ,

∂U

∂T
=
∂U

∂β

∂β

∂T
(20)

=
3

2
h̄ω
(
1− coth2(βh̄ω/2)

) h̄ω
2

(
−kBβ2

)
(21)

= −3

4
h̄2ω2β2kB(1− coth2(βh̄ω/2)) (22)

The important energy scale here is h̄ωβ/2. Let’s define x = h̄ωβ/2. Then

CV = −3kBx
2(1− coth2(x)) (23)

1.2.4 Check versus the law of Dulong and Petit

Solution: We know that as T →∞, then U → 3kBT . Equivalently, as β → 0, then U → 3/β.

coth(x) =
ex + e−x

ex − e−x
(24)

' 2

2x
=

1

x
(25)

where we used a Taylor expansion at small x. Plugging this into the above formula, we get

U ' 3

2
h̄ω2/βh̄ω = 3/β (26)

as was anticipated from the large T limit. This is reassuring!

1.2.5 Sketch the heat capacity as a function of temperature.

Solution: The heat capacity is shown in Fig 2. You should write what checks you have done to make sure
the plot is reasonable here. At large T , the heat capacity goes to 3kB , as expected from the law of Dulong
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and Petit, and as shown in the previous section. At small values of T , CV → 0. This actually must happen
thermodynamically, since ∆S =

∫
CV

T dT (from PHYS 213!!). Assuming that S(T = 0) = 0, that means that

S(T ) =

∫ T

0

CV
T ′

dT ′ (27)

Therefore, CV (T ) must go to zero as T → 0; otherwise the total entropy would be infinite.
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