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• Errors and uncertainties

• The reading error

• Accuracy and precession

• Systematic and statistical errors

• Fitting errors

• Presentation of the results
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Introduction
• Uncertainties exist in all experiments

• The final goal of any experiment is to obtain reproducible results. 
Knowing errors and uncertainties is an essential part for ensuring 
reproducibility.

• To know the uncertainties we use two approaches:

(1) Repeat each measurement many times and determine how well the 
result reproduces itself. If the results are different then there are 
statistical errors. 

(2) Measure the quantity of interest using a different method. The 
results, if correct, are independent of the measurement technique. 
If the results are different then there are systematic errors in one 
of the methods or in both.

(3) Presenting the result of your experiment: Use the right number 
of significant digits, in agreement with the estimated 
uncertainty.



Xmeas = Xtrue + es + er
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Probability distribution of the measured value



Systematic vs. Statistical Uncertainties
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• Systematic uncertainty

– Uncertainties associated with imperfect knowledge of 
measurement apparatus, other physical quantities needed for the 
measurement, or the physical model used to interpret the data.

– Generally correlated between measurements.  Cannot be reduced 
by multiple measurements. 

– Better calibration, or measurements employing different 
techniques or methods can reduce the uncertainty.   

• Statistical Uncertainty 

– Uncertainties due to stochastic fluctuations of molecules and 
photons and vibrations etc.

– Generally there is no correlation between successive 
measurements. 

– Multiple measurements can be used to reduce this uncertainty. 



Example of Systematic Error
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• For example, if your measuring tape has been stretched out, 
your results will always be lower than the true value. 
Similarly, if you’re using scales that haven’t been set to zero 
beforehand, there will be a systematic error resulting from the 
mistake in the calibration. Such errors cannot be reduced 
simply by repeating the measurement and averaging the 
results. Such errors can be reduced by analyzing the 
instrument(s) used for the measurement and by using different 
instruments. 



Sources of systematic errors: poor calibration 
of the equipment, changes of environmental 
conditions, imperfect method of observation, 
drift and some offset in readings etc.   

Example #1: measuring of the DC voltage

R
Current 
source

I

U

U=R*I

Rin

expectation

Eoff

𝐔 = 𝐑𝐈 + 𝐄𝐨𝐟𝐟

actual result

Eoff = Offset Votlage

7Ideal case Real case



Example #3: poor calibration
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The standard uncertainty σ of a measurement result x is the estimated 

standard deviation of x. 

The relative standard uncertainty σr of a measurement result x is defined by 

σr = σ /|x|, where x is not equal to 0.

In statistics, the standard deviation (SD, also represented by the Greek 

letter sigma σ) is a measure that is used to quantify the amount of variation 

or dispersion of a set of data values. A low standard deviation indicates that 

the data points tend to be close to the mean value of the set (μ=<xi>), while 

a high standard deviation indicates that the data points are spread out over 

a wider range of values.
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Meaning of uncertainty:

Assume the distribution of the measurement results is normal 

(Gaussian).

 If the result of a measurement is x, and the standard deviation is σ, 

then the interval x – σ to x + σ is expected to encompass 

approximately 68 % of the measurement results (if the measurement is 

repeated again and again).

Let us X is the true value (never known exactly) and x is the measured 

value. The probability that the true value X is greater than x - σ, and is 

less than x + σ is estimated as 68%. 

This statement is commonly written as X= x ± σ.
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The interval representing two standard deviations contains

95.4% of all possible true values.

Confidence interval <x> ± 3σ contains 99.7% of possible outcomes.



physics 403 12

Use of concise notation:

If, for example, v = 1 234.567 89 m/s and Δv = 0.000 11 m/s, where 

m/s is the unit of v, then v = (1 234.567 89 ± 0.000 11) m/s.  

A more concise form of this expression, and one that is used 

sometimes, is v = 1 234.567 89(11) m/s, where it understood that the 

number in parentheses is the numerical value of the standard 

uncertainty referred to the corresponding last digits of the quoted 

result.

Examples of results which do not make sense (too many digits):

v = (1234.5678934534940945 ± 0.011) m/s

or v = (1234.56 ± 0.01) m/s



𝑻 = 𝟔𝟑℉±? Best guess ∆𝑻~𝟎. 𝟓℉

Wind speed 4mph±? Best guess ±𝟎. 𝟓𝒎𝒑𝒉
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If they say T=63.32456 F, that would be wrong 
since it is not possible to predict or even measure the temperature at our campus
with such high precision. 



1675 Ole Roemer: 220,000 km/s

Maxwell’s theory prediction: 
The speed of light does not depend on the light wavelength, frequency or 
color. It is a universal constant.
NIST Bolder Colorado c = 299,792,456.2±1.1 m/s.

Ole Christensen Rømer
1644-1710

Does it make sense?
What is missing?

Measurement of the speed 
of the light
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L=53mm±ΔL(?)

∆𝑳 ≅ 𝟎. 𝟓𝒎𝒎

∆𝑳 ≅ 𝟎. 𝟎𝟑𝒎𝒎

Use a simple ruler if 
you do not care about 
accuracy better than 
1mm

How far we have to go in reducing the reading error?

Acrylic rod

Otherwise you 
need to use 
digital calipers 

Probably the natural limit of 
accuracy can be due to length 
uncertainty because of 
temperature expansion. For 
53mm ∆𝑳 ≅ 𝟎. 𝟎𝟏𝟐𝒎𝒎/𝑲

Reading Error = ±
𝟏

𝟐
 (least count or minimum gradation).
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Fluke 8845A multimeter

Example Vdc (reading)=0.85V
∆𝑽

= 𝟎. 𝟖𝟓 × 𝟏. 𝟖 × 𝟏𝟎−𝟓 + 𝟏

× 𝟔 × 𝟏𝟎−𝟔 ~ 𝟐𝟎𝝁𝑽
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The accuracy of an experiment 

is a measure of how close the 

result of the experiment comes 

to the true value

Precision refers to how closely 

individual measurements agree 

with each other
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Siméon Denis Poisson 
(1781-1840)
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r: decay rate  [counts/s] t: time interval [s]                  

➔  Pn(rt) : Probability to have n decays in time interval t

A statistical process is described 
through a Poisson Distribution if:

o  random process → for a given  

nucleus probability for a  decay to 
occur is the same in each time 
interval.

o universal probability → the 

probability to decay in a given time 
interval is same for all nuclei.

o no correlation between two instances 
(the decay of on nucleus does not 
change   the probability for a second  
nucleus to decay.)

0 5 10 15 20

0.0

0.1

0.2

0.3

P

number of counts

rt=1

rt=4

rt=10

physics 403 19



0 5 10 15 20

0.0

0.1

0.2

0.3

P

number of counts

( )
( )

   0,1,2,...
!

−= =

n

rt

n

rt
P t e n

n

r: decay rate  [counts/s] t: time interval [s]                  

➔  Pn(rt) : Probability to have n decays in 

time interval t

rt=10

0

( ) 1  ,  probabilities sum to 1


=

= n

n

P rt



=
= −   = 2

0
( ) ( ) =   ,  

                            standard deviation

nn
n n P rt rt n

0

( )   ,   the mean


=

 =  = n

n

n n P rt rt

Properties of the Poisson distribution:

𝝈 = 𝒓𝒕
< 𝒏 >= 𝒓𝒕
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Source of noisy signal

4.89855
5.25111
2.93382
4.31753
4.67903
3.52626
4.12001
2.93411

Expected value 5V

Actual measured values
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104 106
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Error in the mean is given as   
𝝈𝟎

𝑵
   (This is called standard quantum limit

or the shot noise limit or “standard error”)



Result 0


= 
c

U x
N

σ0- standard deviation
N – number of samples

For N=106 U=4.999±0.001     0.02% accuracy 
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According to Heisenberg uncertainty, 

the ultimate precision of the energy measurement is ΔE~

ℏ

𝒕
   

If N is the number of measurements performed then t=N*t1, where t1 is the time 
needed to perform one measurement.

Thus the precision can be as good as ΔE~
ℏ

𝒕
𝟏

𝟏

𝑵

 To achieve this high precision, one has to use a quantum system, such as a qubit.



Ag b decay
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Model ExpDec2

Equation y = A1*exp(-x/t1) + 
A2*exp(-x/t2) + y0

Reduced Chi-Sqr 1.43698

Adj. R-Square 0.96716

Value Standard Error

C y0 0.02351 0.95435

C A1 104.87306 12.77612

C t1 177.75903 18.44979

C A2 710.01478 25.44606

C t2 30.32479 1.6525
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Residuals

Model Gauss

Equation y=y0 + (A/(w*sq
rt(PI/2)))*exp(-2
*((x-xc)/w)^2)

Reduced Chi-S
qr

4.77021

Adj. R-Square 0.93464

Value Standard Error

Counts y0 1.44204 0.48702

Counts xc 1.49992 0.19171

Counts w 5.93398 0.40771

Counts A 219.24559 14.47587

Counts sigma 2.96699

Counts FWHM 6.98673

Counts Height 29.4798
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Residuals

Model Gauss

Equation y=y0 + (A/(w*sq
rt(PI/2)))*exp(-2
*((x-xc)/w)^2)

Reduced Chi-S
qr

4.77021

Adj. R-Square 0.93464

Value Standard Error

Counts y0 1.44204 0.48702

Counts xc 1.49992 0.19171

Counts w 5.93398 0.40771

Counts A 219.24559 14.47587

Counts sigma 2.96699

Counts FWHM 6.98673

Counts Height 29.4798

Test 1. Fourier analysis

No pronounced frequencies found
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Model Gauss

Equation y=y0 + (A/(w*sq
rt(PI/2)))*exp(-2
*((x-xc)/w)^2)

Reduced Chi-S
qr

4.77021

Adj. R-Square 0.93464

Value Standard Error

Counts y0 1.44204 0.48702

Counts xc 1.49992 0.19171

Counts w 5.93398 0.40771

Counts A 219.24559 14.47587

Counts sigma 2.96699

Counts FWHM 6.98673

Counts Height 29.4798

Test 1. Autocorrelation function 
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Ag b decay
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Clear experiment Data + “noise”

t1(s) 177.76 145.89

t2(s) 30.32 27.94

29
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Deleting data point might confirm any
model, but such data manipulation is strictly
forbidden in science. 



Ag b decay
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Histogram does not follow the  
normal distribution and there is 
frequency of 0.333 is present in 
spectrum 
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Ag b decay
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Autocorrelation function

Conclusion:  fitting function should be modified by adding an additional term:
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Clear experiment Data + noise Modified fitting

t1(s) 177.76 145.89 172.79

t2(s) 30.32 27.94 30.17

FFT
autocorrelation
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y = f(x1, x2 ... xn)
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Derive resonance frequency f
from measured inductance
L±∆L and capacitance C±∆C
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Results: 
f(L1,C1)=503.29212104487Hz
∆f=56.26977Hz

f(L1,C1)=503±56Hz
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Figure 3.Magnetization (M/Ms) of Mn3 single 
crystal versus applied magnetic field with the 
sweeping rate of 0.003 T/s at different 
temperatures. The inset shows ZFC and FC curves.

Phys. Rev. B 89, 184401

Figure 2. Normalized conductivity vs temperature for 
three 250-nm-thick K0.33WO3−y films on YSZ 
substrates. The films are annealed in vacuum at 
different temperatures, with properties shown in the 
inset table. The units of Tanneal are degrees Celcius, 
σ0 is given in 1/mΩcm, n in /cm3, and Tc in degrees 
Kelvin. 

Phys. Rev. B 89, 184501 
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Figure 1. Normalized residuals of the combined dE/dx for antideuteron candidates in the Onpeak ϒ(2S) 
data sample, with fit PDFs superimposed. Entries have been weighted, as detailed in the text. The solid 
(blue) line is the total fit, the dashed (blue) line is the d¯ signal peak, and the dotted (red) line is the 
background.

Phys. Rev. D 89, 111102(R) 
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Figure 10(ii): lambda versus T for indium film with 
thickness 300 nm. Input voltage is 0.2v. Critical 
temperature(b) and penetration depth(A) at 
temperature 0 K is determined

Formula for the fitting curve must be provided

3.37 3.38 3.39

0

10000

20000

 lamda

 NewFunction5 (User) Fit lamda

la
m

d
a

 (
n

m
)

Tp(K)

Model
NewFunction5 (User)

Equation A/(1-(x/b)^4)^.5

Reduced 
Chi-Sqr

4.0762E6

Adj. R-Square 0.90931

Value Standard Error

lamda
A 527.99346 142.5365

b 3.38882 0.00619

Model NewFunction5 (User)  
Equation A/(1-(x/b)^4)^.5  
Reduced Chi-Sqr 4.0762E6  
Adj. R-Square 0.90931  
  Value    Standard Error
lamda A 527.99346      142.5365
lamda b 3.38882          0.00619

1. Units must be written
2. Number of digits must be reasonable



THE END
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