Basic Error Analysis

Physics 403

Eugene V Colla

D. Hertzog
A. Bezryadin

Outline of the lecture

- Errors and uncertainties
- The reading error
- Accuracy and precession
- Systematic and statistical errors
- Fitting errors
- Presentation of the results
\square

Introduction

- Uncertainties exist in all experiments
- The final goal of any experiment is to obtain reproducible results. Knowing errors and uncertainties is an essential part for ensuring reproducibility.
- To know the uncertainties we use two approaches:
(1) Repeat each measurement many times and determine how well the result reproduces itself. If the results are different then there are statistical errors.
(2) Measure the quantity of interest using a different method. The results, if correct, are independent of the measurement technique. If the results are different then there are systematic errors in one of the methods or in both.
(3) Presenting the result of your experiment: Use the right number of significant digits, in agreement with the estimated uncertainty.
I

Errors (uncertainties)

Correct value

Systematic error

Random error

Probability distribution of the measured value

Systematic vs. Statistical Uncertainties

- Systematic uncertainty
- Uncertainties associated with imperfect knowledge of measurement apparatus, other physical quantities needed for the measurement, or the physical model used to interpret the data.
- Generally correlated between measurements. Cannot be reduced by multiple measurements.
- Better calibration, or measurements employing different techniques or methods can reduce the uncertainty.
- Statistical Uncertainty
- Uncertainties due to stochastic fluctuations of molecules and photons and vibrations etc.
- Generally there is no correlation between successive measurements.

Multiple measurements can be used to reduce this uncertainty.

Example of Systematic Error

- For example, if your measuring tape has been stretched out, your results will always be lower than the true value. Similarly, if you're using scales that haven't been set to zero beforehand, there will be a systematic error resulting from the mistake in the calibration. Such errors cannot be reduced simply by repeating the measurement and averaging the results. Such errors can be reduced by analyzing the instrument(s) used for the measurement and by using different instruments.

Example: Systematic errors in electrical measurements

Sources of systematic errors: poor calibration of the equipment, changes of environmental conditions, imperfect method of observation, drift and some offset in readings etc.

Example \#1: measuring of the DC voltage

Current
source

actual result

$$
\mathbf{U}=\mathbf{R I}+\mathbf{E o f f}
$$

$$
\mathbf{U}=\mathbf{R} * \mathbf{I}
$$

Ideal case

Example: Systematic errors in temperature measurments

Example \#3: poor calibration

【I Temperature sensor

Definitions (NIST)

The standard uncertainty σ of a measurement result x is the estimated standard deviation of \mathbf{x}.

The relative standard uncertainty σ_{r} of a measurement result x is defined by $\sigma_{\mathrm{r}}=\sigma /|\mathrm{x}|$, where x is not equal to 0 .
In statistics, the standard deviation (SD, also represented by the Greek letter sigma $\boldsymbol{\sigma}$) is a measure that is used to quantify the amount of variation or dispersion of a set of data values. A low standard deviation indicates that the data points tend to be close to the mean value of the set $\left(\mu=\left\langle x_{i}\right\rangle\right)$, while a high standard deviation indicates that the data points are spread out over a wider range of values.

$$
\sigma=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}, \text { where } \mu=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

Meaning

Meaning of uncertainty:
Assume the distribution of the measurement results is normal (Gaussian).
If the result of a measurement is \mathbf{x}, and the standard deviation is σ, then the interval $\mathbf{x}-\sigma$ to $\mathbf{x}+\sigma$ is expected to encompass approximately 68% of the measurement results (if the measurement is repeated again and again).

Let us \mathbf{X} is the true value (never known exactly) and \mathbf{x} is the measured value. The probability that the true value \mathbf{X} is greater than $\mathbf{x}-\sigma$, and is less than $\mathbf{x}+\sigma$ is estimated as 68%.

This statement is commonly written as $\mathbf{X}=\mathbf{x} \pm \sigma$.

Normal (Gaussian) distribution

$$
P_{n}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{(x-x)^{2}}{2 \sigma^{2}}}
$$

The interval representing two standard deviations contains 95.4% of all possible true values. Confidence interval $\langle x\rangle \pm 3 \sigma$ contains 99.7% of possible outcomes.

Notations

Use of concise notation:
If, for example, $v=1234.56789 \mathrm{~m} / \mathrm{s}$ and $\Delta \mathrm{v}=0.00011 \mathrm{~m} / \mathrm{s}$, where m / s is the unit of v , then $\mathrm{v}=(1234.56789 \pm 0.00011) \mathrm{m} / \mathrm{s}$.

A more concise form of this expression, and one that is used sometimes, is v=1234.56789(11) m/s, where it understood that the number in parentheses is the numerical value of the standard uncertainty referred to the corresponding last digits of the quoted result.

Examples of results which do not make sense (too many digits):

$$
\begin{aligned}
& \mathrm{v}=(1234.5678934534940945 \pm 0.011) \mathrm{m} / \mathrm{s} \\
& \text { or } \mathrm{v}=(1234.56 \pm 0.01) \mathrm{m} / \mathrm{s}
\end{aligned}
$$

Significant digits

ATMOSPHERIC SCIENCES
UNIVERSITY OF ILLINOIS AT URBANA.CHAMPAIGN

Department of Atmospheric Sciences > Urbana-Champaign Weather
CURRENT CONDITIONS

	willard
a	$63^{\circ} \mathrm{F}$
	10:53AM

Partly Cloudy Skies
Temperature: $63^{\circ} \mathrm{F}$
Dew Point: $43^{\circ} \mathrm{F}$
Rel. Humidity: 47%
Winds: NW at 4 mph
Visibility: 10 miles
Pressure: 1019.3 mb (30.10 in)
Sunrise: 6:41AM
Sunset: 6:49PM

Rest Of today

Partly sunny with isolated showers. Highs in the mid 60 s. Northwest winds 5 to 10 mph . Chance of precipitation 20 percent.

This forecast is provided by
National Weather Service

$T=63^{\circ} \mathrm{F} \pm ? \quad \longrightarrow \quad$ Best guess $\Delta T \sim 0.5^{\circ} \mathrm{F}$

$$
\text { Wind speed } 4 \mathrm{mph} \pm ? \rightarrow \text { Best guess } \pm 0.5 m p h
$$

If they say $T=63.32456 \mathrm{~F}$, that would be wrong since it is not possible to predict or even measure the temperature at our campus with such high precision.

It is important to know uncertainties in science

Fig. 70.

Measurement of the speed of the light

1675 Ole Roemer: $\mathbf{2 2 0 , 0 0 0} \mathbf{~ k m} / \mathrm{s}$

Does it make sense? What is missing?

Maxwell's theory prediction:
The speed of light does not depend on the light wavelength, frequency or

1color. It is a universal constant.
NIST Bolder Colorado $c=299,792,456.2 \pm 1.1 \mathrm{~m} / \mathrm{s}$.

Reading erfor

How far we have to go in reducing the reading error?

Use a simple ruler if you do not care about accuracy better than 1 mm

Otherwise you need to use digital calipers

Probably the natural limit of accuracy can be due to length uncertainty because of temperature expansion. For $53 \mathrm{~mm} \Delta L \cong 0.012 \mathrm{~mm} / \mathrm{K}$ Reading Error $= \pm \frac{1}{2}$ (least count or minimum gradation).

Reading error. Digital meters.

Fluke 8845A multimeter

Example Vdc $($ reading $)=0.85 \mathrm{~V}$

$$
\begin{aligned}
& \Delta V \\
& =0.85 \times\left(1.8 \times 10^{-5}\right)+1 \\
& \times\left(6 \times 10^{-6}\right) \sim 20 \mu V
\end{aligned}
$$

8846A Accuracy

Accuracy is given as \pm (\% measurement $+\%$ of range)

Range	$\begin{gathered} 24 \text { Hour } \\ \left(23 \pm 1^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 90 \text { Days } \\ \left(23 \pm 5^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 1 \text { Year } \\ \left(23 \pm 5^{\circ} \mathrm{C}\right) \end{gathered}$	Temperature Coefficient/ ${ }^{\circ} \mathrm{C}$ Outside 18 to $28^{\circ} \mathrm{C}$
100 mV	$0.0025+0.003$	$0.0025+0.0035$	$0.0037+0.0035$	$0.0005+0.0005$
1 V	$0.0018+0.0006$	$0.0018+0.0007$	$0.0025+0.0007$	$0.0005+0.0001$
10 V	$0.0013+0.0004$	$0.0018+0.0005$	$0.0024+0.0005$	$0.0005+0.0001$
100 V	$0.0018+0.0006$	$0.0027+0.0006$	$0.0038+0.0006$	$0.0005+0.0001$
1000 V	$0.0018+0.0006$	$0.0031+0.001$	$0.0041+0.001$	$0.0005+0.0001$

IT

Accuracy and precession

The accuracy of an experiment is a measure of how close the result of the experiment comes to the true value

Precision refers to how closely individual measurements agree with each other

Accuracy and precession

Not Precise, Not Accurte

Accurate, Precise

Precise, Not Accurate

Random errors, Poisson distribution

Siméon Denis Poisson (1781-1840)

illinois.edu

$$
P_{n}(t)=\frac{(r t)^{n}}{n!} e^{-r t} \quad n=0,1,2, \ldots
$$

r : decay rate [counts/s] t : time interval [s]
$\rightarrow P_{n}(r t)$: Probability to have n decays in time interval t

A statistical process is described through a Poisson Distribution if:

- random process \rightarrow for a given nucleus probability for a decay to occur is the same in each time interval.
- universal probability \rightarrow the probability to decay in a given time interval is same for all nuclei.
- no correlation between two instances (the decay of on nucleus does not change the probability for a second nucleus to decay.)

Poisson distribution

$$
P_{n}(t)=\frac{(r t)^{n}}{n!} e^{-r t} \quad n=0,1,2, \ldots \begin{aligned}
& r: \text { decay rate [counts/s] } t \text { : time interval [s] } \\
& \rightarrow P_{n}(r t): \text { Probability to have } n \text { decays in } \\
& \text { time interval t }
\end{aligned}
$$

Properties of the Poisson distribution:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} P_{n}(r t)=1, \text { probabilities sum to } 1 \\
& <n>=\sum_{n=0}^{\infty} n \cdot P_{n}(r t)=r t, \text { the mean } \\
& \sigma=\sqrt{\sum_{n=0}^{\infty}(n-<n>)^{2} P_{n}(r t)}=\sqrt{r t}=\sqrt{n}, \\
& \text { standard deviation }
\end{aligned}
$$

Poisson distribution at large rt

$$
P_{n}(t)=\frac{(r t)^{n}}{n!} e^{-r t} \quad n=0,1,2, \ldots
$$

Poisson and Gaussian distributions

Carl Friedrich Gauss (1777-1855)

1

$$
P_{n}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}}
$$

Gaussian distribution: continuous

Measurement in presence of noise: perform averaging to reduce the standard eror

4.89855
5.25111

2.93382
4.31753
4.67903
3.52626
4.12001
2.93411

Actual measured values

Measurement in presence of noise

1
Error in the mean is given as $\frac{\sigma 0}{\sqrt{N}}$ (This is called standard quantum limit or the shot noise limit or "standard error")

Measurement in presence of noise

Result $\longrightarrow U=x_{c} \pm \frac{\sigma_{0}}{\sqrt{N}}$
σ_{0} - standard deviation N - number of samples

For $\mathbf{N}=10^{6} \mathrm{U}=4.999 \pm \mathbf{0 . 0 0 1}$
0.02\% accuracy

Heisenberg limit measurments

According to Heisenberg uncertainty,
the ultimate precision of the energy measurement is $\Delta \mathrm{E} \sim \frac{\hbar}{t}$
If N is the number of measurements performed then $\mathrm{t}=\mathrm{N}^{*} \mathrm{t}_{1}$, where t_{1} is the time needed to perform one measurement.

Thus the precision can be as good as $\Delta E \sim \frac{\hbar}{t_{1}} \frac{1}{N}$
To achieve this high precision, one has to use a quantum system, such as a qubit.

1

Fitting errors

$\mathrm{Ag} \beta$ decay

$$
\boxed{\square} \quad y=A 1 \cdot \exp \left(\frac{-t}{t_{1}}\right)+A 2 \cdot \exp \left(\frac{-t}{t_{2}}\right)+y_{0}
$$

Fitting. Analysis of the deviations

$\mathrm{Ag} \beta$ decay

Test 1. Fourier analysis

No pronounced frequencies found

1

Fitting. Analysis of the residuals

Correlation function $\quad y(m)=\sum_{n=0} f(n) g(n-m)$
autocorrelation function $\quad y(m)=\sum_{n=0}^{M-1} f(n) f(n-m)$
T

Fitting. Analysis of the residuals. Non "ideal ${ }^{w}$ case

	Clear experiment	Data + "noise"
$\mathbf{t}_{\mathbf{1}}(\mathbf{s})$	177.76	145.89
$\mathbf{t}_{\mathbf{2}}(\mathbf{s})$	$\mathbf{3 0 . 3 2}$	27.94

I

Note: deleting data is not allowed of course

Deleting data point might confirm any model, but such data manipulation is strictly forbidden in science.

1

Fitting. Analysis of the residuals. Non "ideal ${ }^{w}$ case

Histogram does not follow the normal distribution and there is frequency of 0.333 is present in spectrum

Fitting. Analysis of the residuals. Non "ideal ${ }^{w /}$ case

Conclusion: fitting function should be modified by adding an additional term:

$$
y(t)=y_{0}+A_{1} \exp \left(\frac{-t}{t_{1}}\right)+A_{2} \exp \left(\frac{-t}{t_{2}}\right)+A_{3} \sin (\omega t+\theta)
$$

Fitting. Analysis of the residuals. Non "ideal ${ }^{w}$ case

	Clear experiment	Data + noise	Modified fitting
$\mathbf{t}_{\mathbf{1}}(\mathbf{s})$	177.76	145.89	172.79
$\mathbf{t}_{\mathbf{2}}(\mathbf{s})$	30.32	$\mathbf{2 7 . 9 4}$	30.17

Error propagation

$y=f(x 1, x 2 \ldots x n)$

$$
\Delta f\left(x_{i}, \Delta x_{i}\right)=\sqrt{\sum_{i=1}^{n}\left[\frac{\partial f}{\partial x_{i}}\right]^{2} \cdot \Delta x_{i}^{2}}
$$

Error propagation. Example.

Derive resonance frequency f

$$
f(L, C)=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}}
$$ from measured inductance $L \pm \Delta L$ and capacitance $C \pm \Delta C$

$$
L_{1}=10 \pm 1 \mathrm{mH}, C_{1}=10 \pm 2 \mu \mathrm{~F}
$$

$$
\Delta f(L, C, \Delta L, \Delta C)=\sqrt{\left[\frac{\partial f}{\partial L}\right]^{2} \cdot \Delta L^{2}+\left[\frac{\partial f}{\partial C}\right]^{2} \Delta C^{2}}
$$

$$
\begin{aligned}
& \frac{\partial f}{\partial L}=\frac{-1}{4 \pi} C^{-\frac{1}{2}} L^{-\frac{3}{2}} ; \\
& \frac{\partial f}{\partial C}=\frac{-1}{4 \pi} L^{-\frac{1}{2}} C^{-\frac{3}{2}}
\end{aligned}
$$

Results:

$f\left(L_{1}, C_{1}\right)=503.29212104487 \mathrm{~Hz}$ $\Delta f=56.26977 \mathrm{~Hz}$

$f\left(\mathrm{~L}_{1}, \mathrm{C}_{1}\right)=503 \pm 56 \mathrm{~Hz}$

Presentation of the results. Reports/publications, Condenced Matter Physics.

Figure 3.Magnetization (M/Ms) of Mn3 single crystal versus applied magnetic field with the sweeping rate of $0.003 \mathrm{~T} / \mathrm{s}$ at different temperatures. The inset shows ZFC and FC curves.

Phys. Rev. B 89, 184401

Figure 2. Normalized conductivity vs temperature for three 250 -nm-thick K0.33WO3-y films on YSZ substrates. The films are annealed in vacuum at different temperatures, with properties shown in the inset table. The units of $T_{\text {anneal }}$ are degrees Celcius, $\sigma 0$ is given in $1 / \mathrm{m} \Omega \mathrm{cm}, \mathrm{n}$ in $/ \mathrm{cm} 3$, and Tc in degrees Kelvin.

Phys. Rev. B 89, 184501

Presentation of the results. Reports/publications, Particle Physics.

Figure 1. Normalized residuals of the combined $d E / d x$ for antideuteron candidates in the Onpeak $\curlyvee(2 S)$ data sample, with fit PDFs superimposed. Entries have been weighted, as detailed in the text. The solid (blue) line is the total fit, the dashed (blue) line is the d^{-}signal peak, and the dotted (red) line is the background.

Presentation of the results, Student Reports.

Figure 10(ii): lambda versus T for indium film with thickness 300 nm . Input voltage is 0.2 v . Critical temperature(b) and penetration $\operatorname{depth}(\mathrm{A})$ at temperature 0 K is determined

Model	NewFunction5 (User)	
Equation A/(1- $\left.(\mathrm{x} / \mathrm{b})^{\wedge} 4\right)^{\wedge} .5$		
Reduced Chi-Sqr	$4.0762 \mathrm{E6}$	
Adj. R-Square	0.90931	
lamda	Value	Standard Error
lamda b	527.99346 142.5365 3.38882 0.00619	

1. Units must be written
2. Number of digits must be reasonable

Formula for the fitting curve must be provided
\square

THE END

