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Do we understand the Universe
we live in?

"M'AT"T'siz FORCE ..

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
Galaxies, Planets, etc.
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1st Stars
about 400 million yrs.

Big Bang Expansion

13.77 billion years
Leptons

Standard Model of

Standard Cosmological Model Particle Physic



Standard Models are incomplete...

* What's the origin of matter —
antimatter asymmetry in today’s
Universe?

 What is dark matter or dark
energy?

* What is the nature of gravity?

e Can all forces in nature be
unified?

Dark Matter



In Search of “New” Standard Model

B LHC: direct search for new particles
# Discovery of Higgs!
¢ Hints of New Physics?

B Precision measurements:
¢ EDMs of e, n, atoms, etc.
¢ Weak mixing angle

+ 0vp3p

¢ Muon g-2

¢ Lepton flavor violation

¢ 1t, K and B decays

Mostly Nuclear Physics

¢ Unitarity tests



Fermilab Muon g-2 result — new physics?

Brookhaven _,
result ' ®
Fermilab °
result
o : &
Standard Model Experiment
Prediction Average
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Theory: g-fac.: 2.00233183620(86) anomalous mag. moment: 0.00116591810(43)
Experiment: g-fac.: 2.00233184122(82), anomalous mag. moment: 0.00116592061(41)



Neutrino Oscillation and Neutrino Mass

KEK, Tsukuba
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Super-K: atmospheric v, neutrino oscillation
SNO: solar v, flavor transformation

K2K: accelerator Vi oscillation

Kamland: reactor v, disappearance and oscillation

Neutrinos have Mass

The first evidence of physics beyond the Standard Model!



Our Sun is a copious source of electron type neutrinos ...

In a famous experiment 1968
(Nobel prize (2002), Ray Davis)
Observe solar electron-type neutrinos v,
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Detection in a huge underground vat of

cleaning fluid (615 tons) via the reaction
STCl + ve=3"Ar + e

radioactive argon atoms collected
periodically and counted :

Produced at only 15 atoms per month !

Experiment located 1500m underground
Homestake Gold Mine in SD

3 million times less cosmic ray interactions

(bkgrds) due to muons (which are very |

penetrating particles), compared to the surface. '§

Far too few (~1/3) solar neutrinos were seen
compared to predicted solar production !



The plot thickens — some good fortune ...
1983 experiments (for protons decay) also good neutrino detectors ... cross check Homestake.

In the Kamioka Mine in Japan

i) ) * Depth of 1000m
¢ e Cerenkov radiation .
cone <\ from amuon produced » Water tank (3000 tons for the first one)
| by a muon neutrino event .
v, - yeusawel geinedccular - * [NStrumented to observe light flashes from | !
u = ring in the photomultiplier , , :
Muon Muon ) detector bank produced from p’s or e’s.

neutrino % H 1 ‘ :
~ .
A i i (led by M. Koshiba, also a 2002 Nobelist) The sun imaged
£ , from the electron shower with neutrinos
v | produced by an electron
e

| neunno event poduces. - Pgrticles are produced along the v direction :

multiple cones and

therefore a diffuse ring For the first time directional information.

in the detector array.
‘ !i Super KamiokaNDE

N
Electron Electron
neutrino shower

; fi*mf i!r 50,000 tons of ultra pure water
"‘A\maSSI\,{e detector, known as S i observed by 11,200 photomultiplier tubes
SuperK”, clearly observed v's SRRy, : s ;
from the Sun, and confirmed :

41 m hiah
(An aside : An unexpected dividend at Kamioka

the signal of missing solar v’s.

In addition, SuperK was able
to observe v’'s produced in the The luckiest break since 1604 ! : Super Nova SN1987A
upper atmosphere by cosmic 10%8 neutrinos produced from 168,000 light years away.
rays — “atmospheric v's”, and 11 observed in 13 second interval by KamiokaNDE Il )
to tell where they were
coming from, leading to a : Physicist watersports :
Breakthrough Observation afloat in a raft inspecting PMTs
in 1998 N



Atmospheric Neutrino

Atmospheric neutrinos originate in cosmic ray “showers”

The showers produce ! Down-going v
p electron, muon (and tau) — L~20 km
type neutrinos, in a mix

that can be predicted.

R~ W

Neutrinos can reach
SuperK from above or
from below (the Earth
is hardly a barrier at all
to a neutrino, after all.)

Stunning Result | 4

i Up-going v

"v . v detector Observed neutrino rates & mixture L~13 000 km
differed for the two directions ! :

I’ EVV
R . .
Were flavors changing in transit ?
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Electron Scattering

( neutrino \

\ v
Cerenkov Light | B neutring. o
electron neutr ino s ~ \@_\\\ / :
v { \_‘. \,‘ '.;--.;J — "\ oL
‘9 NG \--_/ \ () proton
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Charge Current
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Unknown Properties of Neutrinos

m? m?
Major Questions in Neutrino Physics A -V, A
[I— VH
* Majorana particle, (i.e. its own -V
antiparticle) ms? | 1 m,?
[ |
0 I solar~5x10%eV? | 5
* Absolute mass scale of neutrinos. atmospheric T
~3x103eV?2 ,
* Mass hierarchy > s erle
my? | ~3x10-%eV
_ solar~5x102eV?2
*CP violation phase m12__ V_ ——]7132
« Anomalies (Sterile neutrinos?) ?
0 = 0

“Normal hierarchy” “Inverted hierarchy
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Double Beta Decay

Observable if single beta

decay is forbidden Two neutrino double beta decay
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Neutrinoless double beta decay
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Observation of Oovp:

|
« Majorana neutrino M X
. |
o Neutrino mass scale

« Lepton number violation n ‘:rfr:p\\c
= S—
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The EXO-200 Detector

HV FILTER AND
FEEDTHROUGH

VETO PANELS

High purity

Heat transfer fluid
HFE7000

>50cm

DOUBLE-WALLED

CRYOSTAT

FRONT END
25 mm ea

ELECTRONICS

LXe VESSEL

VACUUM PUMPS ol

LEAD SHIELDING
>25cm

VETO PANELS
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Liguid Xenon Time Projection Chamber

The EXO-200 time projection
chamber uses both scintillation
and ionization signals to fully
reconstruct energy depositions
inside liquid xenon

Charge collection - 8kV TPC Schematics

Single Site Events (SS) Multiple Site Events (MS)

""" vk - -

}S’* }S"LL . Event topology is a powerful tool
A R B IS ¢ not only for gamma background

TTTYTLT UUYTYTTYSOOO T YT T rejection, but also for signal
N S o .

i e S R discovery.

ui i uti b e
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EXO-200 installation site: WIPP

SALT SYORAGE PILES WASTE HANDLING

T * EXO-200 installed at WIPP (Waste

EX0-200 m\ ~/ / o Isolation Pilot Plant), in Carlsbad, NM
Iocatipn * 1600 mwe flat overburden (2150 feet,
h 650 m)

NOT YET EXCAVATED
EXISY! m ANEL
= >
A >, e
ot >

* U.S. DOE salt mine for low-level
radioactive waste storage

* Cleanroom installed on adjustable
stands to compensate salt movements.

* Salt “rock” low activity relative to hard-
rock mine

O, ~1.5x 10°yr ' m™sr™
U ~0.048 ppm

Th ~0.25ppm

K ~ 480 ppm

Esch et al., arxiv:astro-ph/0408486 (2004)
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EXO-200 Ovpp Results

EXO-200 TPC

EXO-200 uses liquid xenon time projection chamber
(TPC) to search for Ovpp of 136Xe

Successful operation from 2011 — 2018 with total 136Xe
isotope exposure of 234.1 kg-yr.

Experimental sensitivities continue to exceed statistics
due to improvements in hardware and analysis.

Setting one of the strongest limits on this rare decay.

Combined Phase | + II:

Limit T,,0f > 3.5 x 1025 yr (90% C.L.)

{mgg) < (93 — 286) meV
Sensitivity 5.0x1025 yr

2012: Phys. Rev. Lett. 109, 032505
2014: Nature 510, 229-234

2018: Phys. Rev. Lett. 120, 072701
2019: Phys. Rev. Lett. 123, 161802

x10%
100~ e  sensitivity 2019
- [ 68% C.I. of limits
so— °® data limit
- ----- |MT projection 2018
5 e
= E
40— 2014
20 — 201.2 ___________ I ke
_ l """"""" Start of Phase-2
0 ] L 1 1 I 1 L 1 1 I 1 l L 1 l 1 1 1 1 I 1 1 1 L
0 50 100 150 200 250

Exposure [Kg - yr]



From EXO-200 to nEXO
EXO0-200 as a technology nEXO: a 5000 kg enriched LXe TPC

demonstrator

X
2.5MeV vy 130
attenuation length cm
8.5cm= —

N {

150kg 5000kg =



Pre-Conceptual Design of nEXO

S tones of single phase LXe TPC.
Ionization charge collected by anode.
178nm lights detected by ~4 m? SiPM array behind field shaping rings.

Combining light and charge to
enhance the energy resolution.

nEXO pre-CDR, arXiv:1805.11142

charge
readout pads
(anode)

YR VR BV
\ R R A

‘. m electron
‘: drift

-
=
~

SiPM ‘staves’
covering the barrel

in-xenon cold
electronics

(charge and
SiPMs)

cathode
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CCD Counts

1 00_-_

Tagging 3 decay daughter Ba
35 Xe—'3 Ba™ +2e” +2v.,

< 58-atom

< 15-atom

CCD Counts / mW
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C. Chambers et al., Nature, 569, 203—207 (2019)




nEXO Sensitivity (with Ba tagging)

Normal

Improved Background Rejectjon
‘ ‘ ' ' hierarchy

13°Xe 0v33 Ty [yr]

Phys. Rev. Lett. 105 (2010) 252503

GCM: Rodriguez, Martinez-Pinedo,

L NEXO Sensitivity (90% C.L.) £

| |--- nEXO Discovery 3o, Prob. 50% |1

P 1.9x10% | O EXO-200 Sensitivity (90% C.L.) |
1025 ; . . | | | ] ] ]

0 1 2 3 4 5 6 7 8 9 10
Livetime [yr]

nEXO Sensitivity Paper: arXiv:1710.05075
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https://arxiv.org/abs/1710.05075

What can Neutrino tell us
about the Universe?

* What role did neutrino play in the evolution of the
universe? (~ 4% mass of the universe, absolute mass
scale”? Number of species? ... double beta decay
experiment, tritium decay experiment, sterile neutrino
search...)

« Can neutrino be responsible for the matter and anti-
matter asymmetry? ( CP violation phase? ... long
baseline neutrino experiment)

* Neutrino might be the best probe deep into the
universe (lceCube...)

» Supernovae neutrinos, relic neutrinos...

21



