We will present some of our slides and many Phys 403 student slides as examples. We will talk about why they are or are not well-constructed examples.
This is a technical presentation, so you must develop it as a logical sequence.

- What was the goal?
 - What physics did you address?
 - What technology?
 - Define your special vocabulary here

- What did you actually do?
 - Apparatus / Procedures / Raw Data

- What are your results?
 - Polished graphs, proofs, numerical findings
 - Principal difficulties and uncertainties

- Conclusions

Fonts matter for projectors:
- Arial
- Comic Sans
- Times
- Courier

For online talks using sans serif font is not important -- computer monitors have much better resolution than screen projectors.

Slide title tells what the slide is about. The rest of the slide supports the assertion.
Choose readable font sizes and slide backgrounds

Write titles in size 32 bold

Write body text in size 18-20

Write comments / citations in size 14
Choose readable font sizes and slide backgrounds

Write titles in size 32 bold

Write body text in size 18-20

Write comments / citations in size 14

Text is too dark!
Choose readable font sizes and slide backgrounds

Write titles in size 32 bold

Write body text in size 18-20

Write comments / citations in size 14

Make good contrast between text and background
Presentation components and grading scale

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>Max. Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attended both days</td>
<td>5</td>
</tr>
<tr>
<td>Title was sent to instructor on time</td>
<td>3</td>
</tr>
<tr>
<td>First slide has appropriate title, name, affiliation, date</td>
<td>3</td>
</tr>
<tr>
<td>Scientific background, goal and motivation were clearly and correctly presented</td>
<td>20</td>
</tr>
<tr>
<td>Research activities were clearly and correctly presented</td>
<td>20</td>
</tr>
<tr>
<td>Results were clearly and correctly presented</td>
<td>20</td>
</tr>
<tr>
<td>Technical aspects: good balance of text and figures, good quality figures, appropriate citations, correct spelling, correct number of significant digits, etc.</td>
<td>20</td>
</tr>
<tr>
<td>Time management: good balance between Introduction-Procedure-Results-Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Spoke clearly, at a good pace, loud enough, etc.</td>
<td>3</td>
</tr>
<tr>
<td>Finished on time and answered questions clearly and correctly</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Each speaker has 17 minutes, including questions. We recommend 15 min. talk + 2 min. questions.
OPTICAL STUDY OF FERROELECTRIC POTASSIUM DIDEUTERIUM PHOSPHATE (DKDP)
Phase transition of Helium 4

Below $T_\lambda = 2.17$ K, helium exists in mixture of superfluid and normal liquid helium.
What happens if they are struck by pulses?

A pulse or a series of pulses is used to change the net magnetization of the system. Pulsed NMR!

\[M(t) = M_0 e^{\frac{-t}{T_2}} \]
What happens to a nucleus in a magnetic field?

Energy

\[\Delta E = \gamma \cdot \hbar \cdot B_0 = \hbar \omega_0 \]

Larmor frequency!

(Courtesy of Bishop. K)
Phase Transition in BaTiO$_3$
Phase Transition in BaTiO$_3$
Phase Transition in BaTiO$_3$
Phase Transition in BaTiO$_3$
Setup diagrams, apparatus, measuring idea...

Schematic diagram adapted from notes

- **LHe**
- **AC input**
- **SR830**
 - Lock-in amplifier
 - AC input
 - Ref In
- **Lock-in amplifier**
- **Function generator**
 - Agilent 33220A
- **GPIB**
- **DMM**
 - HP34401A
- **DC bias for receiver**
- **Asin(ωt)**
- **Resonator**
- **Transmitter**
- **Receiver**
- **cryostat**
- **DT470**
- **10μA**
- **LakeShore 110**
 - DC current supply
Experimental Apparatus

Everybody loves an optical bench, but unless you map out the elements and the beam paths, it doesn’t mean much.
Example of an image that is not a good setup diagram without labels (but it can go on a title slide)
Setup of Source and Detectors

\[\theta_{AC} \]
\[\theta_{AB} \]
\[\theta_{BC} \]

A

B

C

Anode (to CFD)

Dynode (to MCA)

Aperture

High voltage power supply
Samples: preparation, configuration etc.

Silver Paint

Electrode

Sample

Leads
Presenting data is your most important and challenging task.
Examples of plots showing results

Raw tunneling data

Count Rate vs. Pressure (Argon)

\[\alpha \text{- range data + fitting results} \]

Energy gap derived from tunneling conductivity

\[\tau_{\text{fast}} \approx 4 \text{ ns} \]
\[\alpha_{\text{fast}} = 1\% \]

Fluorescence data + fitting results

\[\tau_{\text{slow}} = 3.54 \pm 0.013 \text{ ms} \]
\[\alpha_{\text{slow}} = 99\% \]

Too many significant digits!

Font too small!
Difference in Up-Down (unnormalized)

Fit equation \(Ne^{\tau} \left(1 + \alpha \cos(\omega t + \delta) \right) \)

Put citations in the slide where you use the image, not at the end of the talk.
Examples of plots showing results

Difference in Up-Down (normalized)

Fit equation

$$Ne^{\frac{-t}{\tau}} \left(1 + \alpha \cos(\omega t + \delta)\right)$$

Courtesy Samuel Homiller and Pakpoom Buabthong Fall 2013
Results – witnessing a mystery?
Fitting to the Curie-Weiss law

\[\varepsilon' = \frac{C}{T - T_C} + \text{off} \]

\[C = 3563.3 \pm 0.4 \text{K} \]
\[T_C = 118.9825 \pm 0.0003 \text{K} \]

Courtesy Zongyuan Wang and Arnulf Taylor Su 2017
AFM of Optical Data Storage Media

CD

Blu-Ray

<table>
<thead>
<tr>
<th></th>
<th>CD</th>
<th>DVD</th>
<th>Blu-Ray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark length</td>
<td>0.99 - 2.96</td>
<td>0.48 - 1.45</td>
<td>0.14 - 0.41</td>
</tr>
<tr>
<td>Track pitch</td>
<td>1.63</td>
<td>1.00</td>
<td>0.40</td>
</tr>
<tr>
<td>Track width</td>
<td>0.50</td>
<td>0.24</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Units in μm
Fitting the data

\[V = C \sqrt{\left(\frac{T - T_{\text{offset}}}{T_{\lambda}} \right) \left(1 - \left(\frac{T - T_{\text{offset}}}{T_{\lambda}} \right)^{5.6} \right)} \]

Offset, intrinsic to the experiment

\[C \approx 26 \]
\[T_{\lambda} \approx 2.17 \]

Fit to the exponents as well

Perform the 5 parameter fit-

The values that are obtained are not very close to the expected values

Also, the fit is not the best

Reference where this equation came from
Try to fit the data with this function

\[
V = \left(1 - \frac{T - T_{\text{offset}}}{T_{\lambda}} \right)^\gamma
\]

The data refuses to fit to this function

\[
\chi^2 / \text{ndf} = 361.7 / 14
\]

\[
\begin{align*}
C & = 14.56 \pm 0.04278 \\
\gamma & = 0.1668 \pm 0.003116 \\
T_{\text{off}} & = -0.2356 \pm 0.005738 \\
T_{\lambda} & = 2.17 \pm 0.0
\end{align*}
\]
Finish your talk with discussion and conclusions and a slide showing the main points you want us to remember

• Make sure you discuss the principal uncertainties.
 • *For most of these experiments, it will be how accurately does your instrument measure something*
 • *A few experiments will also have statistical uncertainties … more data leading to a better finding*

• Include a representative (simplified) graphic
 • *This slide will be up during question period so this graphic will get burned into people’s memory*

• Because this is a lab, offer some advice for others who follow
Typical Problems

Magnetic Field Calibration

• The magnetic field from the Earth and other residual magnetic fields is minimized by rotating the stand and adjusting the vertical field coils to minimize the zero field peak width.

• With the main field coils off, the sweep field is applied to determine the center of the zero field resonance (was found to be at 0.251A; using the geometry of the coils, this corresponds to 0.151 gauss).

• RF field is adjusted to provide maximum transition probability.

Sample Sweep Field Graph
(Sweep Frequency=200kHz)

Too many words on slide

Also do not use note cards during your talk -- practice giving your talk out loud to smooth your oral delivery
Great data but symbols are too small

Nice figure
Typical Problems

Zero field resonance and Zeeman resonances (rf 200 kHz)

Transmitted light intensity (V)

Sweep Coil Field (gauss)

Rb87 Zeeman resonance
Rb86 Zeeman resonance

Too many lines – graph should be “polished” (Optical Pumping)
Use more contrasting colors for lines
Deadlines

• All talk **titles** should be submitted via email to Prof. Colla no later than midnight **Thursday, March 3rd**

• **Presentation files** should be uploaded on **my.physics** no later than **11:00 AM** the day of your presentation