W-Bosons as a Microscope for the Observation of Quarks and Anti-Quarks Inside the Proton

M. Grosse Perdekamp
University of Illinois, Urbana Champaign

PHYS 403 – Research Talk
March 23rd, 2021
W-Bosons as a Microscope for the Observation of Quarks and Anti-Quarks Inside the Proton

- From Atoms to Quarks
- Particle Accelerators as Microscopes
- The Weak Nuclear Force as Probe of Proton Structure
- Turning the PHENIX Spectrometer into a Microscope for Quark and Anti-Quarks
From Atoms to Quarks: What is the Substructure of Matter?

Asked early: Leukipp and Demokrit (~ 450-400 BC) → atomic hypothesis!

There are small particles, atoms, of which all matter is made and which cannot be divided in smaller parts.

Some 2400 years & 80 generations later:

Modern experimental tools may provide quantitative answers in our lifetime!
The Atoms of the 20th Century: Quarks and Leptons

Up- and down-**quarks** are the building blocks of all **nuclear matter** in the nuclei of atoms.

Electrons make up the shell of atoms.

Forces:
- Electromagnetic ➔ Photon
- Strong Nuclear ➔ Gluon
- Weak Nuclear ➔ \(Z^0, W^+,- \)
Synthesis of Atomic Matter from the 20th Century Atoms

- atom ~ 10^{-10} m
- nucleus ~ 10^{-14} m
- Proton/neutron ~ 10^{-15} m
- electron < 10^{-18} m
- quark < 10^{-18} m

Observing Quarks and Anti-Quarks Inside the Proton
The Proton, a Complex System of Quarks, Anti-Quarks and Gluons

valence quarks: 2 up-, 1 down-quark

 gluons, the force carriers of the strong nuclear force.

“sea-quarks” : quark-anti-quark pairs that can be formed from a gluon for a short time and annihilate again.

1 Fermi m = 1 Fm \sim 10^{-15} m
Constituents Particles of the Proton:

quarks = u, d, s and gluons

\[q(x) = \text{quark momentum distribution} \]

Probability to observe a quark q with relative momentum \(x \).

\[G(x) = \text{gluon momentum distribution} \]

Probability to observe a gluon with relative momentum \(x \).

\[x = \frac{p_{\text{quark}}}{p_{\text{proton}}} \]
Quark and Gluon Spin Distributions

Constituents Particles of the Proton:
quarks = u, d, s and gluons

\[\Delta q(x) = \text{quark spin distribution} \]
Probability to observe a quark with relative momentum \(x \) contributing to the proton spin.

\[\Delta G(x) = \text{gluon spin distribution} \]
Probability to find gluon with relative momentum \(x \) contributing to the proton spin.

\[x = \frac{P_{\text{quark}}}{P_{\text{proton}}} \]
Decomposition of the Proton Spin: Quark Spin + Gluon Spin + Orbital Angular Momentum

Origin of the Proton Spin:
- Add all quark spin contributions \(\Delta q(x) \rightarrow \Delta \Sigma \)
- Add all gluon spin contributions \(\Delta G(x) \rightarrow \Delta G \)

\[
\frac{1}{2} \frac{\hbar}{\Delta} = \frac{1}{2} \hbar \Delta \sum + \hbar \Delta G + \hbar L_z
\]

Quark Spin
Orbital Angular momentum
Gluon Spin
Experimental Method: Scattering of High Energy Particles on Target Material Under Study

Ernest Rutherford: Scattering experiments lead to the discovery of the atomic nucleus, 1911

source of \(\alpha \)-particles (He-nuclei)

Observation of \(\alpha \)-particles at large angles

J.J. Thomson Atomic Plum Pudding Model

E. Rutherford dense, heavy nucleus

Observing Quarks and Anti-Quarks Inside the Proton
Discovery of Quark Structure in Protons Through Electron-Proton Scattering at SLAC

Nobel Prize 1990 for
Jerome Friedman, Henry Kendall and Richard Taylor
Δu is positive and contributes about + 0.69 \hbar
Δd is negative and contributes about - 0.33 \hbar
The total quark spin contribution, $\Delta \Sigma = 0.3 \hbar$

Next steps:
- measure gluon spin contribution
- probe anti-quark distributions (directly)
Impact of COVID on COMPASS

Moving out UIUC built DC5 for repair in clean room at CERN

Replacing 20µm W/Au anodes

Challenge: bringing UIUC repair team to CERN ...
Measurement of Spin-Dependent Anti-Quark Distributions in PHENIX at RHIC

The Relativistic Heavy Ion Collider is located at Brookhaven National Laboratory on Long Island.
How Can we Probe Proton Spin Structure at RHIC?

At ultra-relativistic energies the proton represents a jet of quarks and gluons.

Use the weak nuclear force ($W^+,-$-bosons) to directly probe anti-quarks!

\[p + p \rightarrow W^\pm \rightarrow \mu^\pm + \nu \]

Error projections from computer simulations, the future error band from Ws at RHIC is red!

\[A_L \approx \frac{x}{u} \]

\[m_W = 80 \, m_{\text{proton}} \]

\[\Rightarrow \text{high energy muons!} \]
The Experimental Challenge in PHENIX

Only 1 (useful) W-boson in 1 billion p-p collisions

Must operate at 5-10 million p-p collisions per second!

PHENIX has 350,000 readout channels
10 MHz corresponds to about 5 TeraByte/second detector data

All raw data are kept for 4 micro sec. after this only selected data can be written to tape (0.5 GigaByte/second)

Need to develop new detectors + fast online computers to find high energy muons from W-boson decay in less than 4 micro seconds!!
The W-Trigger Upgrade in PHENIX

(I) Develop fast processor boards to identify high energy muons in 4 micro seconds.

(II) Develop fast readout electronics for existing muon tracking chambers

(III) Develop additional fast tracking detectors, RPCs, for timing and background rejection

89 physicists from 18 institutions in the US, Japan, Korea and China:

KEK, Kyoto, RIKEN, Rikkyo, LANL, U. New Mexico, Seoul National University (JSPS funded)

UIUC, RBRC, UC Boulder, ISU, CIAE/PKU, Columbia University, GSU, UC Riverside, Korea University, ACU, Muhlenberg College, Hanyang University (NSF funded)

Construction: September 2005 to January 2012
The Construction Project

- RPCs in Urbana (NSF)
- RPCs in PHENIX (NSF)
- muTr trigger electronics (JSPS)
- FPGA based level-1 trigger processors
- SS 310 absorbers for background rejection

3/23/2021
Assembly in the RPC Factory at BNL

Cosmic RPC test stand
Installation in the PHENIX Spectrometer

PHENIX RPC-1 north (~ 3m) PHENIX RPC-3 north (diameter ~ 10 m)
Three Years of Data Taking

Good Accelerator Performance!

Good Detector Performance!

Luminosities

2011: BBC < 30cm 18.50 pb^{-1}
2012: BBC < 30cm 31.47 pb^{-1}
2013: BBC < 30cm 156.49 pb^{-1}

North SG1_RPC13BC μ^+

South SG1_RPC13BC μ^+
Finally results published PRD in summer 2018:

- **A_L(W⁺Z→μ⁺e⁻)**
 - $p+p$ at $\sqrt{s} = 510$ GeV
 - A_L^p (2012)
 - A_L^p (2013)
 - PHENIX A_L^p (2011-2012), $p_T > 30$ GeV
 - PHENIX A_L^p (2013), $p_T > 30$ GeV

- **STAR $A_L(W⁺Z→μ⁺e⁻)$**
 - STAR A_L^p (2014) 072501

DSSV: projected impact of new 2013 STAR and PHENIX data

- $x\Delta\bar{u}$ with projected W-data
 - $Q^2 = 10$ GeV2

DSSV from “The RHIC Spin Program”

Aschenauer et al. arXiv:1501.01220
A large experimental effort in polarized e-p and p-p is underway to determine the spin structure of the proton.

In deep inelastic e-p scattering the quark spin contribution has been found to be 1/3.

W-Production in polarized proton-proton Collisions at RHIC provide unique sensitivity to the anti-quark spin distributions in the proton.

The PHENIX detector was upgraded successfully for W-physics. Data taking has been completed successfully and data analysis has started.
UIUC Group Working the PHENIX W-Trigger and Data Analysis

Ruizhe Yang
Beijing

Scott Wolin
Illinois

Northrup
Grumman

Martin Leitgab
Austria

YouTube

Amazon

Korean Institute for Fundamental Physics

Goldman Sachs

John Koster
New York

Young Jin Kim
South Korea

Dave Northacker
Illinois

Beau Meredith
Illinois

Emily Zarndt
Indiana U.

Francesca Giordano
Italy

Sanger Institute
Cambridge

Anselm Vossen
Germany

NASA

Epic.

Cameron McKinney
Indiana

John Blackburn
Illinois

Jhn Jea Choi
South Korea

Daniel Jumper
Texas

Matthias Perdekamp
Germany

Pedro Montuenga
Venezuela

Amazon

Korean Institute for Fundamental Physics

Goldman Sachs

NASA

Epic.

Cameron McKinney
Indiana

John Blackburn
Illinois

Jhn Jea Choi
South Korea

Daniel Jumper
Texas

Matthias Perdekamp
Germany

Pedro Montuenga
Venezuela
RPC Factory: efficiency & Cluster size

Noise rate

Design Goal

RPC Performance

IhnJea Choi+ Francesca Giordano