Instructors:
Eugene V Colla
kolla@illinois.edu
Virginia (Gina) Lorenz
vlorenz@illinois.edu

Laboratory Specialist:
Jack Boparai
jboparai@illinois.edu

Support from Paul Kwiat Team

Andrew
Andrew Conrad
aconrad5@illinois.edu

Sam
Samantha Isaac
isaac5@illinois.edu

Spencer
Spencer Johnson
sjj3@illinois.edu
Outline

I. Goals of the course
II. Teamwork / grades / expectations from you
III. Syllabus and schedule
IV. Your working mode
 In class and “after hours” access
 Safety, Responsibility
 Home and away computing
V. Take a Lab tour (only video)!
VI. Let’s get started
 electronic logbooks
Course Goals. Primary goals:

• Learn how to “do” research

✓ Each project is a mini-research project

✓ How are experiments actually carried out?
 The procedures aren’t all written out
 The questions are not in the back of the chapter
 The answers are not in the back of the book
 You will have to learn to guide your own activities

✓ Use of modern tools and modern analysis and data-recording techniques
Course Goals. Primary goals:

• **Learn how to document your work**
 • Online - **electronic logbook** *
 • Online – saving data and projects in student area on server
 • Using traditional paper logbooks
 • Making an analysis report
 • Writing **formal reports**
 • Presenting your findings **orally (online)**

* In red gradable assignments
Course Goals. Secondary goals:

• Learn some modern physics
 – Many experiments were once awarded by Nobel-prize
 – They touch on important themes in the development of modern physics
 – Some will provide additional insight to understand advanced courses you have taken
The Experiments. Three main groups

- **Nuclear / Particle (NP)**
- **Atomic / Molecular / Optics (AMO)**
- **Condensed Matter (CM)**

You will do the experiment from all these groups
The Experiments

- **Nuclear / Particle (NP)**
 - Alpha particle range in gasses
 - $\gamma-\gamma$ correlation experiment
 - γ spectroscopy
 - Mössbauer spectroscopy
The Experiments

• Nuclear / Particle (NP)
 – Cosmic ray muons:
 Lifetime, capture rate, magnetic moment
 – Angular distribution of cosmic rays
 – γ – spectroscopy
 – Mössbauer spectroscopy (new)
The Experiments
Atomic/Molecular/Optics (AMO)

- Berry’s phase
- Quantum erasure
- Quantum Entanglement
The Experiments
Atomic/Molecular/Optics (AMO)

- Optical pumping of rubidium gas
- Fluorescence spectroscopy

Detector signal (V)

Lock-in output (mV)

I_{\text{main}} = 1.11 A
The Experiments

• Condensed Matter (CM)
 – Superconductivity
 – Tunneling in superconductors
 – 2nd sound in 4He superfluid state
The Experiments

- **Condensed Matter (CM)**
 - Ferroelectrics and ferroelectric phase transition
 - Pulsed NMR
 - Calibration of temperature sensors

![Domains in BaTiO3 doped by Rh](image)

![Graph of BaTiO3](image)

![Graph of BaTiO3 with E vs P](image)
The Experiments

- **Condensed Matter (CM)**
 - Special Tools:
 - Vacuum film deposition
 - Atomic Force Microscope
 - Polarizing microscope
The “manuals”

- Many are just guides
- A only few purchased experiments have “real” manuals
- We serve as your guides ... like real research ... yes, we will do it in “online” mode too. We have prepared the materials explaining how to do the experiments and data analysis and you can find all these materials and examples of data analysis in folder in common drive.
Outline

I. Goals of the course
II. Teamwork / grades / expectations from you
III. Syllabus and schedule
IV. Your working mode
 In class and “after hours” access
 Safety, Responsibility
 Home and away computing
V. Take a Lab tour!
VI. Let’s get started
 electronic logbooks
 digital scopes
Grading: Distribution of “740” points

<table>
<thead>
<tr>
<th>ASSIGNMENT</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expt. documentation</td>
<td>120 Total</td>
</tr>
<tr>
<td>elog reports, shift summaries, plot quality; paper logbooks</td>
<td>60 / cycle</td>
</tr>
<tr>
<td>Formal reports</td>
<td>400 Total</td>
</tr>
<tr>
<td>physics case, quality of results, depth of analysis, conclusions</td>
<td>100 / report</td>
</tr>
<tr>
<td>1st Oral report</td>
<td>100 Total</td>
</tr>
<tr>
<td>motivation, organization of presentation; fielding questions</td>
<td></td>
</tr>
<tr>
<td>Final Oral Presentation ≡ Final Exam</td>
<td>120</td>
</tr>
<tr>
<td>Total</td>
<td>740</td>
</tr>
</tbody>
</table>

The grading scale will be a percentage out of “740”:

Letter grading scale is approximately 97% = A+, 93% = A, 90% = A-, 87% = B+, 83% = B, 80% = B-, etc

You can RESUBMIT one lab report to improve your grade (deadline for resubmissions and for report #4 Dec. 8th 2020)
Grading: a piece of history and analysis of the results

Physics 403 2005-2020
571 students total

Count
final grade
A+
A-
B+
B

Physics 403
2005-2020
571 students total
Submission of Lab-Reports

• Due dates as on syllabus at midnight

• The reports should be uploaded to the server:

 • https://my.physics.illinois.edu/courses/upload/

• Accepted MS-Word or PDF

• For orals – MS-PowerPoint* or PDF

* preferable
Absences

• If you are sick, let Eugene know by email (kolla@Illinois.edu). Don’t come in and get others sick. We are working side-by-side in a close environment for many hours.

• You can “make up” the time with arrangements and you can have access to the rooms. We will be accommodating.
Absences. Excuse Policy.

- You can be excused from only one missed assignment, and only if you provide medical or any other acceptable documentation\(^1\).
- If the excused you have missed the oral presentation (oral #1), you have to discuss this with us and we will arrange the date for your oral talk.
- The Final Oral cannot be excused, as it is equivalent to a final exam. You cannot pass the course without credit for this assignment\(^2\).

1. Student Code: https://studentcode.illinois.edu/article1/part5/1-501/
2. Ibid: https://studentcode.illinois.edu/article3/part2/3-201/
Late Reports

- Policy for late reports

 ➢ You can have ONE “late ticket” for a “free” delay of up to 3 business days, but you must tell us you are using the ticket.

 ➢ Reports are due at midnight on the date shown on the syllabus. After that we will charge:

 • 5 points for up to 1 week late. 10 points for up to 2 weeks late.

 • After that, it’s too late.
Outline

I. Goals of the course
II. Teamwork / grades / expectations from you
III. Syllabus and schedule
 IV. Your working mode
 In class and “after hours” access
 Safety, Responsibility
 Home and away computing
 V. Take a Lab tour!
VI. Let’s get started
 electronic logbooks
digital scopes
Syllabus

Cycles

* Lecture topics are subject to change

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Activity</th>
<th>Comment</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/25</td>
<td>Tues</td>
<td>Orientation</td>
<td>About Phy403</td>
<td>online</td>
</tr>
<tr>
<td>8/27</td>
<td>Thurs</td>
<td>Cycle 1-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/01</td>
<td>Tues</td>
<td>Cycle 1-2</td>
<td>OriginPro Intro/Root</td>
<td></td>
</tr>
<tr>
<td>9/03</td>
<td>Thurs</td>
<td>Cycle 1-3</td>
<td>Elog Comments</td>
<td></td>
</tr>
<tr>
<td>9/08</td>
<td>Tues</td>
<td>Cycle 1-4</td>
<td>Written Reports</td>
<td></td>
</tr>
<tr>
<td>9/10</td>
<td>Thurs</td>
<td>Cycle 1-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/15</td>
<td>Tues</td>
<td>Cycle 1-6</td>
<td>Error analysis</td>
<td></td>
</tr>
<tr>
<td>9/17</td>
<td>Thurs</td>
<td>Cycle 1-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/22</td>
<td>Tues</td>
<td>Cycle 1-8</td>
<td>Oral Reports/Talks</td>
<td></td>
</tr>
<tr>
<td>9/24</td>
<td>Thurs</td>
<td>Cycle 1-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/29</td>
<td>Tues</td>
<td>Cycle 1-10</td>
<td>Optical spectroscopy</td>
<td></td>
</tr>
<tr>
<td>10/01</td>
<td>Thurs</td>
<td>Cycle 1-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/06</td>
<td>Tues</td>
<td>Cycle 1-12</td>
<td>Ferroelectricity</td>
<td></td>
</tr>
<tr>
<td>10/08</td>
<td>Thurs</td>
<td>Cycle 2-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/13</td>
<td>Tues</td>
<td>ORALS 1</td>
<td>online</td>
<td></td>
</tr>
<tr>
<td>10/15</td>
<td>Thurs</td>
<td>ORALS 1</td>
<td>online</td>
<td></td>
</tr>
<tr>
<td>10/20</td>
<td>Tues</td>
<td>Cycle 2-2</td>
<td>High Energy Physics</td>
<td>C1-Ex2 (10.21.20)</td>
</tr>
<tr>
<td>10/22</td>
<td>Thurs</td>
<td>Cycle 2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/27</td>
<td>Tues</td>
<td>Cycle 2-4</td>
<td>Noise (mw)</td>
<td></td>
</tr>
<tr>
<td>10/29</td>
<td>Thurs</td>
<td>Cycle 2-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/03</td>
<td></td>
<td></td>
<td>Election Day</td>
<td></td>
</tr>
<tr>
<td>11/05</td>
<td>Thurs</td>
<td>Cycle 2-6</td>
<td>Lock-in Amps and FT</td>
<td></td>
</tr>
<tr>
<td>11/10</td>
<td>Tues</td>
<td>Cycle 2-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/12</td>
<td>Thurs</td>
<td>Cycle 2-8</td>
<td>Entanglement</td>
<td>C2-Ex1 (11.13.20)</td>
</tr>
<tr>
<td>11/17</td>
<td>Tues</td>
<td>Cycle 2-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/19</td>
<td>Thurs</td>
<td>Cycle 2-10</td>
<td>Measuring Temp</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thanksgiving Break</td>
<td></td>
</tr>
<tr>
<td>12/01</td>
<td>Tues</td>
<td>Cycle 3-11</td>
<td></td>
<td>online</td>
</tr>
<tr>
<td>12/03</td>
<td>Thurs</td>
<td>Cycle 3-12</td>
<td>To be announced</td>
<td>online</td>
</tr>
<tr>
<td>12/08</td>
<td>Tues</td>
<td>Cycle 3-12</td>
<td>Final Orals #1</td>
<td>online</td>
</tr>
<tr>
<td>12/10</td>
<td></td>
<td>READING DAY</td>
<td></td>
<td>C2-Ex2 (12.10.20)</td>
</tr>
<tr>
<td>12/15</td>
<td>Thurs</td>
<td>Final Orals #1</td>
<td></td>
<td>online</td>
</tr>
<tr>
<td>NP</td>
<td>CM</td>
<td>Atomic + CM</td>
<td>Optics</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>A. Cosmic Muon Stand</td>
<td>A. Ferro 1</td>
<td>A. Optical pumping</td>
<td>A. Quantum Table</td>
<td></td>
</tr>
<tr>
<td>i. Muon lifetime</td>
<td>B. Ferro 2 (imaging)</td>
<td>B. Superconductivity</td>
<td>i. Berry's phase</td>
<td></td>
</tr>
<tr>
<td>ii. Capture rate</td>
<td>C. 2nd sound of 4He</td>
<td>C. Mutual inductance</td>
<td>ii. Quantum erasure</td>
<td></td>
</tr>
<tr>
<td>iii. Magnetic moment</td>
<td>D. Hysteresis loops</td>
<td>D. pNMR</td>
<td>iii. Entanglement</td>
<td></td>
</tr>
<tr>
<td>B. Alpha range</td>
<td>E. Tunneling</td>
<td></td>
<td>B. Fluorescence spectroscopy</td>
<td></td>
</tr>
<tr>
<td>C. Gamma Gamma</td>
<td>F. T calibration</td>
<td></td>
<td>C. AFM</td>
<td></td>
</tr>
<tr>
<td>D. Muon telescope</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Mössbauer spectroscopy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Virginia, April</th>
<th>Eugene</th>
<th>Eugene, Albur, Andrew</th>
<th>Abid, TAs from Kwiat Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-1</td>
<td>1-2, 3-4, 5-6</td>
<td>7-8, 9-10, 11-12</td>
<td>13-14, 15-16, 17-18</td>
</tr>
<tr>
<td>C1-2</td>
<td>19-20, 21-22, 23-24</td>
<td>1-2, 3-4, 5-6</td>
<td>7-8, 9-10, 11-12</td>
</tr>
<tr>
<td>C2-1</td>
<td>14-16, 15-17, 18-13</td>
<td>20-22, 21-23, 24-19</td>
<td>2-4, 3-5, 6-1</td>
</tr>
<tr>
<td>C2-2</td>
<td>8-10, 9-11, 12-7</td>
<td>14-16, 15-17, 18-13</td>
<td>20-22, 21-23, 24-19</td>
</tr>
<tr>
<td>Cycle</td>
<td>#</td>
<td>Experiment</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>Cosmic ray muons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-4</td>
<td>Alpha range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-6</td>
<td>Gamma-gamma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-8</td>
<td>Ferro 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9-10</td>
<td>Ferro 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11-12</td>
<td>Second Sound</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13-14</td>
<td>NMR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-16</td>
<td>Superconductivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17-18</td>
<td>Optical Pumping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19-20</td>
<td>Fluorescence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21-22</td>
<td>Quantum Optics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23-24</td>
<td>Quantum Optics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19-20</td>
<td>Cosmic ray muons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21-22</td>
<td>Alpha range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23-24</td>
<td>Mössbauer spectroscopy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>Ferro 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-4</td>
<td>Tunneling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-6</td>
<td>Ferro 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-8</td>
<td>NMR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9-10</td>
<td>Superconductivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11-12</td>
<td>Optical Pumping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13-14</td>
<td>Fluorescence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-16</td>
<td>AFM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17-18</td>
<td>Quantum Optics</td>
<td></td>
</tr>
</tbody>
</table>
Assignment of experiments

2 cycles with 2 experiments

- teams change after cycle

- joint team reports and elogs but oral presentations will be done by each student personally
After 2 experiments (1 cycle) we will have oral session. The topic of the presentation will be chosen from the experiments done in this cycle.

Fluorescence of Ruby Crystals
Outline

I. Goals of the course
II. Teamwork / grades / expectations from you
III. Syllabus and schedule
IV. Your working mode
 In class and “after hours” access
 Safety, Responsibility
 Home and away computing
V. Take a Lab tour!
VI. Let’s get started
 electronic logbooks
 digital scopes
Fall 2020 working mode*

This semester we plan to work in hybrid mode:

Each experiment will take six lab days and you are going to work in team of two.

To keep in the lab only 12 P403 students we will share the granting the access to the lab only half of the class at the same time.

It means that one lab day the partner no1 will in Lab and partner no2 – online.

Next lab day you will be swapped – no2 in lab and no1 online.

Finally each student will be able to work in lab during 3 days (50% of total time).

* Subject to change dependable on COVID19 situation and “recommendations” provided by UofI administration.
Fall 2020 working mode.

Each team works together and will have the common grades for report and elogs. It is possible some variations of the prepared team schedule dependable on presence of teammates. The P403 lab works in real time according the course schedule and both partners should work on experiments during the whole lab time in person or online.
Lab Access

Use Your ID Card to Access the Lab

You can access the Lab not only on “Lab days”

Late time rules:

- You can stay in the Lab until 8pm but need to work with partner
- After 8pm and on weekend days – you have to discuss this schedule with your instructor and in general it is preferable to avoid working after 8 pm and on week-

These will be not the options for Fall 2020 semester
Safety is your responsibility!

Hazards: high voltage, radioactive sources, cryogens, chemical materials, high pressure

In class work and “after-hours” access work requires responsible conduct with regards to

(I) safety/hazards and with

(II) equipment

Discuss potential hazards at the beginning of each experiment with an instructor or TA

When in doubt stop and ask
Follow Directly the Recommendations of Safety Working

https://www.drs.illinois.edu/
Follow Directly the Recommendations of Safety Working

Chemical Waste Collection and Storage

Before generating chemical waste, the researcher should determine how it will be collected and stored and obtain the necessary equipment (containers, labels) in advance. The choice of procedures depends on the type of waste and its final disposition. This section explains how to determine the final disposition of waste, select the appropriate waste container, and store waste in the lab or work area. It also suggests waste minimization strategies.

Determining How to Dispose of a Chemical Waste

The final disposition of a chemical waste is determined by the answers to a series of questions:

Step 1. Is the waste Contaminated Debris (glassware, paper towels, clean-up materials), or is it a chemical or chemical mixture?
- If it is contaminated debris: Go to Step 5.
- If it is a chemical or chemical mixture: Go to Step 2.

Step 2. Is the chemical a DEA (Drug Enforcement Agency) controlled substance? (Refer to the DEA list of controlled substances[1])
- Yes: Refer to the DEA Controlled Substances Guide for disposal procedures.
- No: Go to Step 3.

Step 3. Is the chemical a solid (not liquid or gas)?
- Yes: Collect and store the waste as described in the waste container and storage guidelines listed below and dispose of it through the Division of Research Safety (DRS) chemical waste disposal program. See the section Procedures for Requesting Chemical Waste Disposal for the disposal procedures. (No solid chemical waste, hazardous or non-hazardous, should be placed in the regular trash.)
- No: Go to Step 4.

Step 4. Is the chemical a liquid non-hazardous waste as listed in the section Liquid Non-Hazardous Chemical Waste Disposal?
- Yes: The chemical may be poured down the sanitary sewer (sink drain) with copious amounts of water.
- No: Collect and store the waste as described in the waste container and storage guidelines listed below, and dispose of it through the DRS chemical waste disposal program. See the section Procedures for Requesting Chemical Waste Disposal for the disposal procedures.

Step 5. Is the contaminated debris laboratory glassware (broken and unbroken)?
- Yes: See the Laboratory Glassware Waste Disposal section.
- No: Go to Step 6.

Step 6. Is the debris contaminated with a substance listed in the section Liquid Non-Hazardous Chemical Waste Disposal?
- Yes: The contaminated debris can be disposed of in the regular trash.
- No: Collect and store the contaminated debris as described in the waste container and storage guidelines listed below. Dispose...
Definition

Materials that qualify as “sharps” are defined at the state level and shall be disposed of as Potentially Infectious Medical Waste (PIMW). In Illinois, the Illinois Environmental Protection Agency (IEPA) has designated the following material (used or unused) as sharps:

• Any medical needles,
• Syringe barrels (with or without needle),
• Pasteur pipettes (glass),
• Scalpel and razor blades,
• Blood vials,
• Microscope slides and coverslips,
• Glassware contaminated with infectious agents.

NEVER dispose of these items in SDCs:

• Plastic items (except for syringes),
• Beverage containers (no pop cans!),
• Non-biologically contaminated laboratory glassware,
• Solvent/chemical bottles,
• Light bulbs,
• Any paper materials,
• Pipette tips,
• Plastic pipettes,
• Aerosol cans or cans of any type,
• Scintillation vials,
• Any item with liquid (except for blood in vacutainer tubes).

Waste container for sharps
Outline

V. Take a Lab tour! It will be virtual tour.

VI. Let's get started
 electronic logbooks
 digital scopes
Outline

I. Goals of the course
II. Teamwork / grades / expectations from you
III. Syllabus and schedule
IV. Your working mode
 In class and “after hours” access
 Safety, Responsibility
 Home and away computing
V. Take a Lab tour!
VI. Let’s get started
 electronic logbooks
digital scopes
How to record the data

• **Work together**

• **Write down the equipment used**

• **Make a diagram of the setup**

• **Note the settings of dials, switches, gauges**

• **Take a digital photo if appropriate** (*we have prepared and will prepare more pictures of the setups, equipment etc.*)

• **Use a software drawing program to make a detailed sketch**

 (PowerPoint works this very well)
How to record the data

- Use the eLog (see next).
- Write down what you did in real sentences.
- Provide enough detail that you can reconstruct later what you did!
- How will you look at the data later?
- Do you have enough information?
- Did the equipment perform as expected?
How to record the data

• Many experiments require you to “change and measure” something by hand
 – Make a **table** in a *paper logbook* or put the data directly into electronic worksheet (*preferable*).
 – Make a “**quick sketch**” of your by plotting the data using OriginPro or other software

Looking on the graph you can answer the questions:

• Do you have enough points?
• Do you have any obvious anomalies?
• You can repeat points but do not throw them out.

 Use other measurements to check reliability
How to record the data

- Many experiments have built-in, computer-based data acquisition (DAQ)
 - You will not have time to fully understand the DAQ, but
 - Be sure you know functionally what it is doing – ask
 - A good idea is to make test measurements of something you know
 - As before, anomalies? enough points? uncertainties?
Where to exchange, store and retrieve course information.

P403 Lab server

\`\`\`\engr-file-03\PHYINST\APL Courses\PHYCS403
Connecting to the PHYS403 server

Connect to VPN following the instructions on the UIUC VPN website:
https://techservices.illinois.edu/services/virtual-private-networking-vpn/download-and-set-up-the-vpn-client

To connect to the PHYS403 Server:

• Connect to the VPN first, then enter the following as the share to connect to:

 – **Mac users:** Open Finder: Go: Connect to Server, type in address: smb://engr-file-03.engr.illinois.edu/PHYINST/APL Courses/PHYCS403

 – **Windows users:** Open Windows Explorer, type in address: \\engr-file-03.engr.illinois.edu\PHYINST\APL Courses\PHYCS403

• **When prompted for username and password, enter:**
 “UofI\[your netID]” and “[your netID password]”
Where to exchange, store and retrieve course information.

(i) Your data, projects, tables etc

\`\`\`engr-file-03\`\`\`PHYINST\`\`\`APL Courses\`\`\`PHYCS403

There is a lot useful and not very useful stuff in many folders you can find there

“Useful” folders are shown in red frames
Where to exchange, store and retrieve course information. (i) Your data, projects, tables etc

\engr-file-03\PHYINST\APL Courses\PHYCS403

Each student has a folder

Store all experiment related materials in corresponding folder
Where to exchange, store and retrieve course information. (i)
Your data, projects, tables etc

An example of the “smart” structure of folders containing the raw data and data analysis projects.
Where to retrieve course information. **Manuals, papers, setup diagrams and other useful materials**
Where to retrieve course information.
Manuals, papers, **setup diagrams** and other useful materials

\[
\alpha\text{-range experiment setup}
\]

\[
\alpha\text{-range experiment setup diagram}
\]
Where to retrieve course information.

Setup diagrams – do not use cellphones to take the image of the setup from manual – for most setups we have PowerPoint projects with setups.
Where to retrieve course information.

Material Prepared for Online Teaching

- Fall 2020 online

- Introduction (videos)
 - Alpha Range
 - Ferro1
 - Ferro3
 - gamma-gamma

- Reading materials
 - References
 - Setup
 - Software

- Donnelly09_Two-fluid theory and sec...
- LiquidHeliumTwoFluidModel_Ch3_Tilley
- Second sound experiment
“Journal club”

Lectures – Tuesday’s 3pm
Journal Club – Thursday’s 3pm

http://ajp.aapt.org/#mainWithRight
http://www.nature.com/nature/index.htm
http://www.scientificamerican.com/
http://www.sciencemag.org/journals
http://publish.aps.org or http://prola.aps.org/
“Journal club”

Walking with Coffee: Why Does it Spill?

Growth of Diamond Films from Tequila

J. Morales¹,², L. M. Apátiga², V. M. Castaño²

1. Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León
2. Centro de física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México

Fabrication and Characterization of Ultrathin Three-Dimensional Thermal Cloak

The Physics of Beer Tapping

PRESENTATION BY JOSEPH MIRABELLI
JAVIER RODRIGUEZ-RODRIGUEZ, J.*, ALMUDENA CASADO-CHACON, AND DANIEL PUSTER
1. FLUID MECHANICS GROUP, CARLOS III UNIVERSITY OF MADRID
2. CNRS, UNIVERSITÉ PIERRE ET MARIE CURIE
“Journal club”

Journal Access
If you cannot access journal papers using VPN, go to UIUC’s library proxy test site and enter the address of the paper you want to read:
http://www.library.illinois.edu/proxy/test/

Recommended journal websites

- American Physical Society Journals: https://journals.aps.org/about
- Nature: http://www.nature.com/nature/index.html
- Science: http://www.sciencemag.org/journals
- American Journal of Physics: http://scitation.aip.org/content/aapt/journal/ajp
Entering the e-Log ...

Link to e-Log

Welcome

Please see the course description for an explanation of how this course works. It may seem complicated at first, but all the pieces do work together to enhance understanding. Also, please consult the schedule to help you keep track of what is
Entering the e-Log ...

Use your University Username and Password

Submit
Entering the e-Log ...

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>phys403-2020</td>
<td>Physics 403 Spring 2020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 403 Spring 2020 Semester</td>
<td></td>
</tr>
<tr>
<td>phys403-2020</td>
<td>Physics 403 Summer 2020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 403 Summer 2019 Semester</td>
<td></td>
</tr>
<tr>
<td>phys403-2020</td>
<td>Physics 403 Fall 2020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 403 Fall 2020 Semester</td>
<td></td>
</tr>
</tbody>
</table>
Dear all,

Welcome to Modern Physics Lab course.

We will meet online on August 25th and next in person on August 27th

Eugene
How to use it

• Pause and summarize your work at natural stopping points in the action. This is useful for particular findings and measurement sequences.

• Along the way, save data, plots, scope shots to your folder on the server.

• Near the end of the class, add a summary/conclusion, indicate future directions, and make sure the e-log provides a rather complete overview of the highlights of your work. Upload your plots, scope shots, etc. and describe the data.
e-logs: Making a post ...

- Create a New Post
- To create a new post, click "New" from the menu bar.
- Fill in the **Author, Experiment, Post Type, and Subject**

If the post is written by more than one person, use a comma separated list.

Be sure the Author name is the same you used when registering so that you can edit/delete the post if necessary.
e-logs: Making a post ...

<table>
<thead>
<tr>
<th>Author:</th>
<th>Your name and your partner’s name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment:</td>
<td>General</td>
</tr>
<tr>
<td>Post Type:</td>
<td>How-To</td>
</tr>
<tr>
<td>Subject:</td>
<td>Day [#]: brief description of work</td>
</tr>
</tbody>
</table>

Goal: Be specific. Not, “Learn about experiment,” but, for example, “In helium below temperatures of 2.17K, a second sound due to thermal effects becomes measurable. We will measure second sound using a resonant cavity...”

Settings / Equipment Notes: Note important environmental and experimental parameters such as atmospheric pressure, settings on equipment, etc.

[Time Range 1]: Give time range, not just “before tea.”
- Note important steps and results
- Include plots, photos, or scope shots in attachments below
- Use bullet points to make it easy to read

[Time Range 2]: ...

Conclusions & Future Plans: What did you find and what is the next step? Be specific. Not, “We measured decay times,” but, for example, “Ruby #2 sample with higher concentration chromium was observed to decay with a form...”
E-log records should contain the information about parameters of the experiment and that is why we suggest you to use the templates (\engr-file-03\PHYINST\APL Courses\PHYCS403\Common\elog_templates):
Copy and Paste the template (table) into the record and fill it up with numbers corresponding experiment parameters.

<table>
<thead>
<tr>
<th>Message ID: 365</th>
<th>Entry time: 01/14/20 16:34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author:</td>
<td>Eugene Colla</td>
</tr>
<tr>
<td>Experiment:</td>
<td>Ferroelectric (Dielectric)</td>
</tr>
<tr>
<td>Post Type:</td>
<td>Measurement</td>
</tr>
<tr>
<td>Subject:</td>
<td>example of using of the template</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BaTiO₃</th>
<th>BT1</th>
<th>Sample area: 4.01 mm²</th>
<th>Sample thickness: 0.8 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>File name</td>
<td>Folder</td>
<td>T range (K)</td>
<td>Frequency (Hz)</td>
</tr>
<tr>
<td>14JAN20_s1Data:student:BTO:set1</td>
<td>300-100K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Some General Physics 403 Rules.

No Food or Drinks in Lab