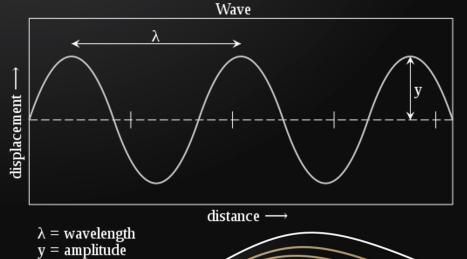
Predictive Seismology

Group 5: Maja, Jake, Katelyn, Matthew, Ian

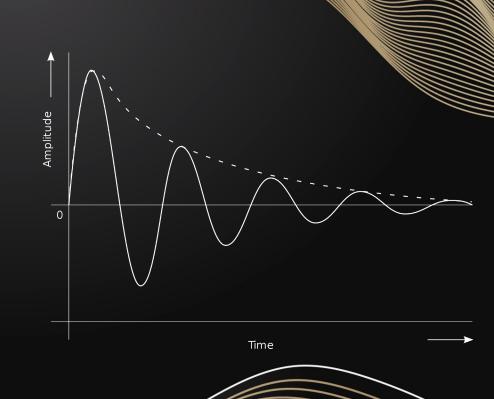
Earthquakes

- Tectonic Plates collide
- Send out waves through Earth and water


© The University of Waikato Te Whare Wānanga o Waikato | www.sciencelearn.org.nz

Seismic waves radiate from the focus of an earthquake

Fault scarp


Wave oscillation

- Displacement along axes
- Propagation direction
- Single Point Origin

Wave oscillation

- Following wave pattern/decay should allow prediction
- If predicted, can be counteracted

Uses

- Protecting sensitive device
- Minimizing damage to structures
- Stabilizing objects acted on by random force

Can we Predict Seismic Activity at a Point Based on Readings from Other Points?

Physics Tools

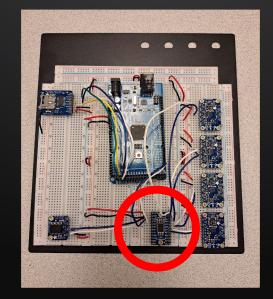
Large Punching Balloon

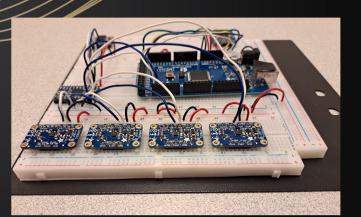
- Rubber maintains elasticity
- Water
- High Inertia
- Plastic Bin
- Maintains boundary conditions
- Stabilizes Test Balloon

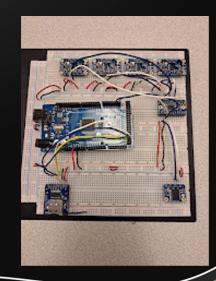
Balloon Popped

Modifications

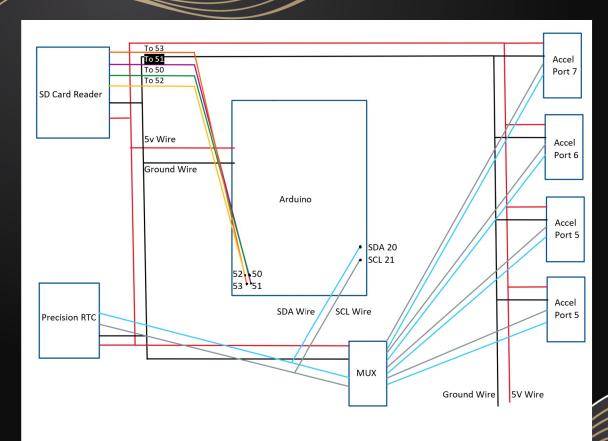
- Plastic Tub
- Water OR Air filled
- Stretched rubber topper
- Accelerometers on flat rubber surface


Data Taking Tools


Arduino with...


- 4 Test Accelerometers
- 1 Control Accelerometer
- SD Card
- RTC data timing
- Multiplexer allows for unique readings from duplicate sensors

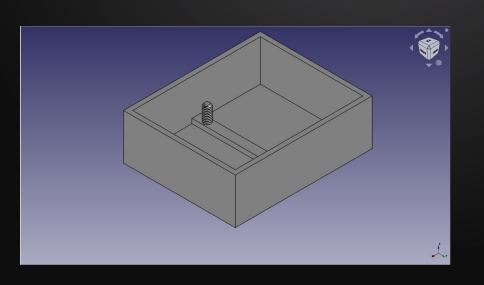
Diagram

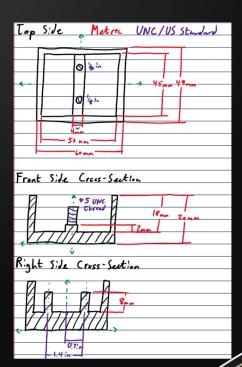


Multiplexer

- Distinguishes between
 unique sensors that are of the
 same type
- Can support up to 8 sensors (0-7)
- Labels each sensor to differentiate data collected

Schematic




```
Code Example
```

```
#define TCAADDR 0x70
                                                         //Initialize Sensors...
                                                        tcaselect(0);
// assign names to each sensor
                                                         if(!lsm0.begin()){
Adafruit LSM9DS1 lsm0 = Adafruit LSM9DS1(0);
Adafruit LSM9DS1 lsm7 = Adafruit LSM9DS1(7);
                                                          Serial.print("lsm0 failed");
Adafruit LSM9DS1 lsm6 = Adafruit LSM9DS1(6):
                                                           while(1);
Adafruit LSM9DS1 lsm5 = Adafruit LSM9DS1(5);
                                                        tcaselect(7);
void setupSensor()
                                                        if(!lsm7.begin()){
 lsm0.setupAccel(lsm0.LSM9DS1 ACCELRANGE 2G);
                                                          Serial.print("lsm7 failed");
 lsm0.setupMag(lsm0.LSM9DS1 MAGGAIN 4GAUSS);
                                                           while(1);
 lsm0.setupGyro(lsm0.LSM9DS1 GYROSCALE 245DPS);
                                                         tcaselect(6);
 lsm7.setupAccel(lsm7.LSM9DS1 ACCELRANGE 2G);
 lsm7.setupMag(lsm7.LSM9DS1_MAGGAIN_4GAUSS);
                                                        if(!lsm6.begin()){
 lsm7.setupGyro(lsm7.LSM9DS1_GYROSCALE_245DPS);
                                                          Serial.print("lsm6 failed");
                                                           while(1);
 lsm6.setupAccel(lsm6.LSM9DS1 ACCELRANGE 2G);
 lsm6.setupMag(lsm6.LSM9DS1_MAGGAIN_4GAUSS);
                                                         tcaselect(5);
 lsm6.setupGyro(lsm6.LSM9DS1_GYROSCALE_245DPS);
                                                        if(!lsm5.begin()){
 lsm5.setupAccel(lsm5.LSM9DS1_ACCELRANGE_2G);
                                                          Serial.print("lsm5 failed");
 lsm5.setupMag(lsm5.LSM9DS1_MAGGAIN_4GAUSS);
                                                           while(1);
 lsm5.setupGyro(lsm5.LSM9DS1 GYROSCALE 245DPS);
```

```
void loop() {
 // put your main code here, to run repeatedly:
 delay(6000);
 tcaselect(0);
 lsm0.read();
 sensors_event_t a, m, g, temp;
 lsm0.getEvent(&a, &m, &g, &temp);
 Serial.print("LSM0: Accel X: "); Serial.print(a.acceleration.x); Serial.print(" m/s^2");
 tcaselect(7);
 lsm7.read();
 // sensors_event_t a, m, g, temp;
 lsm7.getEvent(&a, &m, &g, &temp);
 Serial.print("LSM7: Accel X: "); Serial.print(a.acceleration.x); Serial.print(" m/s^2");
 tcaselect(6);
 lsm6.read();
 // sensors event t a, m, g, temp;
 lsm6.getEvent(&a, &m, &g, &temp);
 Serial.print("LSM6: Accel X: "); Serial.print(a.acceleration.x); Serial.print(" m/s^2");
 tcaselect(5):
 lsm5.read();
 // sensors event t a, m, g, temp;
 lsm5.getEvent(&a, &m, &g, &temp);
 Serial.print("LSM5: Accel X: "); Serial.print(a.acceleration.x); Serial.print(" m/s^2");
```

Accelerometer Case

Calibrating the Accelerometer Data

Why Calibrate?

- Allows us to test the accuracy and precision of our accelerometers
- Allows us to test how feasible our current setup is
 - Will the accelerometers work our medium?

How will we Calibrate?

- 4 methods
 - Each Axis
 - Static
 - Constant Motion
 - On the Medium

Calibration Tests

2 Methods have been completed

- Along Each Axis & Static
 - Could not do other two because of the popping of the balloon

Types of Data Collected & Analyzed

- Rotated the board about each axis & direction
- Let the board run without disturbing it
- From this, we found:
 - Mean readings of each axis
 - Standard deviations of each axis
 - Difference from total mean of each axis

Axial Calibration Analysis

								ta Analysis								
		Acce	elerometer	r 7	Acc	eleromete	r 6	Acc	eleromete	r 5	Acc	eleromete	er 4	Avera	ge Accero	meter
Orientation		X	У	Z	x	У	z	х	У	Z	х	У	Z	X	У	Z
	Mean	-0.1125	-0.247	9.902	-0.319	-0.286	9.908	-0.456	-0.1445	9.761	-0.346	-0.1865	9.7545	-0.30838	-0.216	9.83138
-z	Std. Dev.	0.03259	0.02203	0.08102	0.05609	0.02393	0.07215	0.06142	0.02605	0.07497	0.05977	0.0254	0.0866			
	Dev. Avg.	0.19588	-0.031	0.07062	-0.01063	-0.07	0.07662	-0.14763	0.0715	-0.07037	-0.03763	0.0295	-0.07687	1		
	Mean	-9.8325	-0.12	0.705	-10.0725	-0.31	0.74875	-9.9925	-0.1475	0.58125	-9.92875	-0.1025	0.6125	-9.95656	-0.17	0.66188
x	Std. Dev.	0.06386	0.201	0.8066	0.24523	0.13491	1.17104	0.38997	0.03732	1.25736	0.55789	0.10278	0.77768			
	Error	0.12406	0.05	0.04313	-0.11594	-0.14	0.08688	-0.03594	0.0225	-0.08062	0.02781	0.0675	-0.04937			
	Mean	-0.9225	0.475	-9.73625	-1.2725	0.4775	-9.71125	-1.025	0.5175	-9.97125	-1.03625	0.50875	-9.905	-1.06406	0.49469	-9.83094
z .	Std. Dev.	0.06319	0.22659	0.05655	0.08225	0.2423	0.05693	0.1077	0.2476	0.12778	0.1333	0.24497	0.15529			
	Error	0.14156	-0.01969	0.09469	-0.20844	-0.01719	0.11969	0.03906	0.02281	-0.14031	0.02781	0.01406	-0.07406			
	Std. Dev.															
	Mean	9.6	0.12167	0.95167	9.35667	0.41	1.04	9.48833	0.55	0.94833	9.375	0.51833	0.445	9.455	0.4	0.84625
-x	Std. Dev.	0.38367	0.38871	0.47499	0.25579	0.93977	0.46308	0.13703	1.03875	0.56069	0.20801	0.77644	1.10098			
	Error	0.145	-0.27833	0.10542	-0.09833	0.01	0.19375	0.03333	0.15	0.10208	-0.08	0.11833	-0.40125			
	Mean	1.00143	-10.08	0.39857	0.78571	-10.1329	0.40857	0.74571	-9.71	0.24714	0.67429	-9.59143	0.03143	0.80179	-9.87857	0.27143
v	Std. Dev.	0.5441	0.3897	0.48722	0.67369	0.47678	0.64261	0.67032	0.37452	0.77373	0.64228	0.11261	0.75278			
,	Error	0.19964						-0.05607						•		
	Mean	-0.07857	9.46429	0.35571	-0.34857	9.47429	0.40714	-0.25143	9.54429	0.30143	-0.07286	9.39286	0.52143	-0.18786	9.46893	0.39643
-v	Std. Dev.							0.13209					0.73983			
	Error	0.10929				0.00536	0.01071	-0.06357	0.07536	-0.095		-0.07607				
										11.00.00						

Static Calibration Data - Î

Static Calibration Data - 2

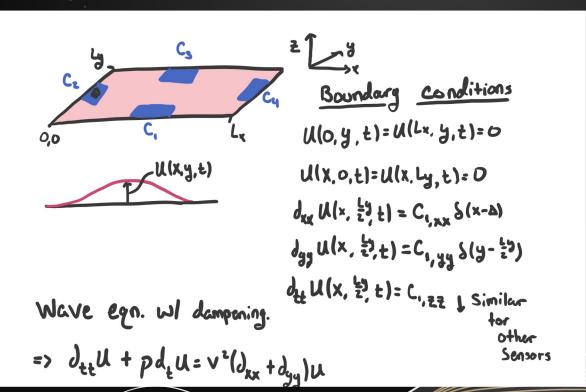
Static Calibration Analysis

	Data Analysis:															
	Accelerometer 7			Accelerometer 6			Accelerometer 5			Accelerometer 4				Average Accelerometer		
	X	у	Z	X	у	Z	X	У	Z	x	у	Z		х	у	Z
Mean	-0.64086	-0.12857	10.378	-0.59586	-0.20629	9.935286	-0.70557	-0.05843	9.775143	-0.58186	-0.10929	9.765143		-0.63104	-0.12564	9.963393
Std. Dev.	0.039407	0.016087	0.061705	0.035732	0.01038	0.049599	0.030151	0.017164	0.053804	0.034779	0.017882	0.049629				
Diff from Average	-0.00982	-0.00293	0.414607	0.035179	-0.08064	-0.02811	-0.07454	0.067214	-0.18825	0.049179	0.016357	-0.19825				

Calibration Error & Conclusion

Possible Sources of Error

- Holding the breadboard
- Subtle vibrations around accelerometers
- Inconsistent calibration during manufacturing


Conclusions

- Replace Accelerometer 5
- Find more accelerometers and test them
- Conduct the other two calibration tests

Readings — Results The Math Section

Developing a Mathematical Model

Solving for an equation: Separation of Variables

* Seperate Variables:
$$U(x,y,t) = \chi(x) \gamma(y) T(t)$$

$$\Rightarrow \frac{T(t)}{T(t)} + P \frac{T(t)}{T(t)} = \sqrt{2} \frac{\chi''(x)}{\chi(x)} + \sqrt{2} \frac{\gamma''(y)}{\gamma'(y)} = -\lambda^{2}$$

$$\Rightarrow \frac{Spatial}{V^{2}} \chi(x) \Rightarrow \chi(x) = A \cos(\frac{c_{x}x}{V}) + B \sin(\frac{c_{x}x}{V})$$

$$\Rightarrow \chi''(x) = \frac{-c_{x}^{2}}{V^{2}} \chi(x) \Rightarrow \chi(x) = A \cos(\frac{c_{x}x}{V}) + B \sin(\frac{c_{x}x}{V})$$

$$\Rightarrow \chi''(x) = A = 0, \quad \chi(|x|) = B \sin(\frac{c_{x}x}{V}) = 0$$

$$\Rightarrow \frac{c_{x}x}{V} = 0 \text{ if } c_{x} = \frac{V \circ \pi}{V} \text{ if } n = 1, 2, 3, ...$$

Speraration cont.

*Time

=>
$$T(t) + pT(t) = \lambda^{2}T(t)$$
 guess $T(t) = Ae^{\omega t}$

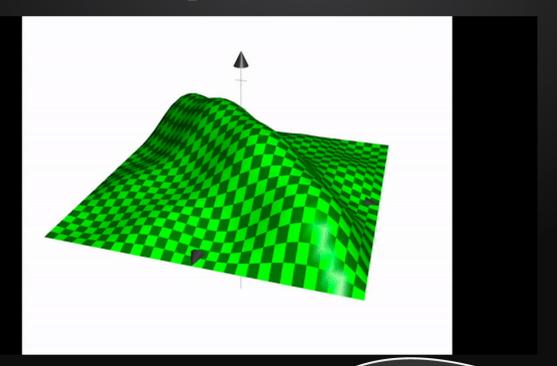
=> $\omega^{2} + p\omega + \lambda^{2} = 0$... $\lambda_{nm}^{2} - C_{x_{n}}^{2} - C_{y_{m}}^{2} = v^{2}\pi^{2}\left(\frac{n^{2}}{l_{x_{n}}^{2}} + \frac{m^{2}}{l_{y_{n}}}\right)$
 $\omega = \frac{-p \pm \sqrt{p^{2} - 4\lambda^{2}}}{2} = \frac{-p}{2} \pm \frac{i}{2}\sqrt{4\lambda^{2} - p^{2}}$
 $\therefore T(t) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} e^{-\frac{p}{2}t} \left(C_{nm}\cos(\frac{1}{2}[4\lambda^{2} - p^{2}]^{\frac{1}{2}t}) + D_{nm}\sin(\frac{1}{2}[4\lambda^{2} - p^{2}]^{\frac{1}{2}t})\right)$

* $\omega_{nm} = \left(\frac{1}{2}[4\lambda^{2} - p^{2}]^{\frac{1}{2}t}\right)$

Boundary Conditions

* mult. by
$$\int_{-1}^{1_{x}} \int_{0}^{1_{y}} \sin\left(\frac{j\pi x}{l_{x}}\right) \sin\left(\frac{i(\pi x)}{l_{y}}\right) dx dy$$

o if $j \nmid n$ or $j \nmid m$


=> $-C_{n,m} \left(\frac{l_{x}l_{x}}{l_{y}}\right) \left(\frac{n^{2}\pi^{2}}{l_{x}^{2}}\right) = \left(C_{l,x_{x}} \sin\left(\frac{n\pi \Delta}{l_{x}}\right) + C_{3,x_{x}} \sin\left(\frac{n\pi}{l_{x}}(l_{x-\Delta})\right)(-1)^{m} + \left(C_{2,x_{x}} \sin\left(\frac{m\pi \Delta}{l_{y}}\right) + C_{4,x_{x}} \sin\left(\frac{m\pi}{l_{y}}(l_{y-\Delta})\right)(-1)^{n}\right)$

=> $C_{n,m} = \frac{-i l_{x}}{n^{2} l_{x}^{2} l_{y}} \left[\left(C_{l,x_{x}} \sin\left(\frac{n\pi \Delta}{l_{x}}\right) + C_{3,x_{x}} \sin\left(\frac{n\pi}{l_{x}}(l_{x-\Delta})\right)(-1)^{m} + \left(C_{2,x_{x}} \sin\left(\frac{m\pi \Delta}{l_{y}}\right) + C_{4,x_{x}} \sin\left(\frac{m\pi}{l_{y}}(l_{y-\Delta})\right)(-1)^{n}\right)\right]$

Finally a Final Solution

Final solution $: \mathcal{L}(x,y,t) = \sum_{i=1}^{\infty} e^{\frac{-i \pi x}{2}} \sin(\frac{n \pi x}{1x}) \sin(\frac{m \pi y}{1x}) \left[C_{n,m} \cos(\omega_{nm} t) + D_{nm} \sin(\omega_{nm} t) \right]$ $+\left(C_{z,xx}Sin\left(\frac{m\pi\Delta}{iy}\right)+C_{y,xx}Sin\left(\frac{m\pi}{iy}\left(i_y-\Delta\right)\right)\left(-1\right)^n\right]$ $\omega_{n,m} = \frac{1}{2} \sqrt{4 \lambda^2 - \rho^2}$, $\lambda_{n,m}^2 = v^2 \pi^2 \left(\frac{1\eta^2}{1\eta^2} + \frac{m^2}{1\eta^2} \right)$

Proof of Concept

What's Next

- -With Balloon popped, we move onto stretched rubber
- Shifting from 3-D wave equations to 2-D wave equations
- -We could possibly try balloon again, but this is a hazardous option