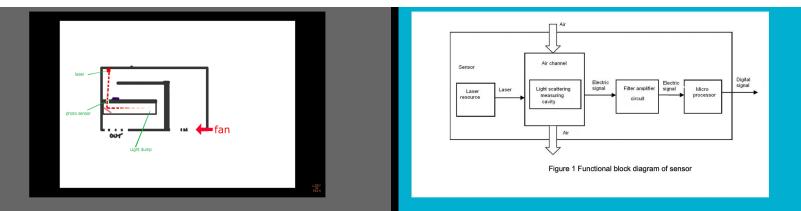
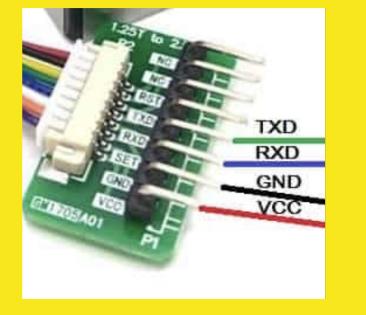

Plantower

Particulate Matter Sensor

By - Samriddhi, Ja<mark>ke, Michael, Nicholas</mark>


What is a Plantower?

PMS5003 is a kind of digital and universal particle concentration sensor, which can be used to obtain the number of suspended particles in the air and output them in the form of digital interface.



How Does it Work?

- The PMS5003 is a nephelometer, meaning that it records suspended particulates by shining a light beam into the cavity. The reflected light is incident upon a light detector set to one side (often 90°) of the source beam.
- The particle density is then a function of the light reflected into the detector and the particle mass is derived from it, assuming certain properties of the particles, such as shape, color and reflectivity, among others (Mie theory - EM scattering from spherical objects).

Breakout Pins

- VCC 5V (fan)
- Ground
- TXD: UART/TTL Receive
- RXD: UART/TTL Transmit

Data at 3.3V

What is UART?

Universal Asynchronous Receivertransmitter

- A physical circuit in microprocessor
- Not synchronous
- Baud Rate needs to be same
- Uses only TX/RX

Superseded by USB, I2C, etc.

32 Bytes			
Start character 1	0x42	2 (Fixed)	
Start character2	0x4d	0x4d (Fixed)	
Frame length high 8 bits		Frame length=2x13+2(data+check bytes)	
Frame length low 8 bits		1	
Data 1 high 8 bits		Data1 refers to PM1.0 concentration unit μ g/m3 (CF=1, standard particle) *	
Data 1 low 8 bits		p grillo (c) = 1; standard particle)	
Data13 high 8 bits		Data13 Reserved	
Data13 low 8 bits			
Data and check high 8 bits		Check code=Start character 1+ Start character 2++data 13 Low 8 bits	
Data and check low 8 bits			

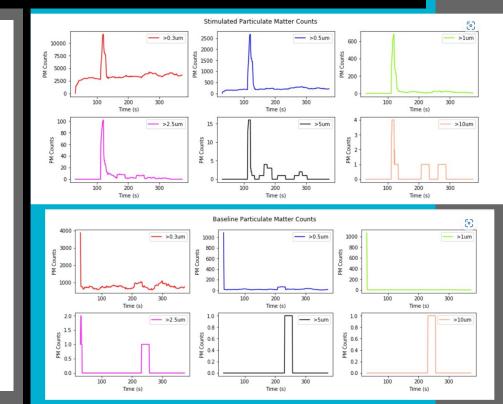
Why do we care?

```
70+boolean readPMSdata(Stream *s) {
     if (! s->available()) {
71+
       return false;
72+
73+
74+
     // Read a byte at a time until we get to the special
75+
  +'0x42' start-byte
     if (s->peek() != 0x42) {
76+
       s->read();
77+
       return false;
78+
79+
80+
     // Now read all 32 bytes
81+
     if (s->available() < 32) {
82+
       return false;
83+
84+
85+
     uint8 t buffer[32];
86+
     uint16 t sum = 0;
87+
     s->readBytes(buffer, 32);
88+
89+
     // get checksum ready
90+
     for (uint8 t i=0; i<30; i++) {</pre>
91+
       sum += buffer[i];
92+
93+
94+
     /* debugging
95+
96+
     for (uint8 t i=2; i<32; i++) {
       Serial.print("0x"); Serial.print(buffer[i], HEX);
97+
  +Serial.print(", ");
98+
```

```
Serial.println();
100+
      */
101-
      // The data comes in endian'd, this solves it so it
02+
  +works on all platforms
      uint16 t buffer u16[15];
103+
      for (uint8 t i=0; i<15; i++) {
104+
105+
        buffer u16[i] = buffer[2 + i^{*}2 + 1];
106+
        buffer u16[i] += (buffer[2 + i*2] << 8);
107+
108-
      // put it into a nice struct :)
109+
110 +
      memcpy((void *)&data, (void *)buffer u16, 30);
111+
12+
      if (sum != data.checksum) {
        Serial.println("Checksum failure");
13+
114+
        return false;
115 +
      // success!
116 +
      return true;
17+
118+}
119+
```

Code Integration

	#include <adafruit_sensor.h></adafruit_sensor.h>			
	<pre>#include <adafruit_sensor.h></adafruit_sensor.h></pre>			
3	<pre>#include <adafruit_gfx.h></adafruit_gfx.h></pre>			
4				
5	Adafruit_PM25AQI aqi = <mark>Adafruit_PM25AQI</mark> ();			
6				
7 ~	void setup() {			
8	//Begin Serial display			
9	<pre>Serial.begin(115200);</pre>			
10	<pre>while (!Serial);</pre>			
11	<pre>Serial.println(F("TESTING!!!"));</pre>			
12				
13	//Plantower			
14	<pre>Serial1.begin(9600);</pre>			
15	<pre>if (!aqi.begin_UART(&Serial1)) { // connect to the sensor over hardware serial</pre>			
16 \vee	<pre>// if (! aqi.begin_UART(&pmSerial)) { // connect to the sensor over software serial</pre>			
17	<pre>Serial.println("Could not find PM 2.5 sensor!");</pre>			
18	<pre>while (1) delay(10);</pre>			
19				
20	<pre>Serial.println("PM25 detected!");</pre>			
21	}			
22				
23	// Allow Plantower time to warm up			
24	display.clearDisplay();			
25 🗸	<pre>for(int i = 0; i < 30; i++) {</pre>			
26	<pre>display.setTextSize(1);</pre>			
27	<pre>display.setTextColor(SSD1306_WHITE);</pre>			
28	display.setCursor(4, 1);			
29	<pre>display.print(30 - i);</pre>			
30	<pre>display.println(F(" seconds left for Plantower warmup"));</pre>			
31	<pre>display.display();</pre>			
32	delay(100);			
33	<pre>display.clearDisplay();</pre>			
34	}			
35				


Adafruit_PM25AQI library Default Library Not very stable Does not drain serial stream

Can also just use Hardware Serial

20					
	void loop() {				
40 ~	<pre>for(int i = 0; i < 20; i++){</pre>				
41	char the_key;				
42	<pre>DateTime now = rtc.now();</pre>				
43	PM25_AQI_Data data;				
44	display.clearDisplay();				
45					
46 🗸	<pre>if (! aqi.read(&data)) {</pre>				
47	<pre>//Serial.println("Could not read from AQI");</pre>				
48	i;				
49	PTb = false;				
50	continue;				
51	}				
52					
53	<pre>Serial.print(F("Particles > 0.3um / 0.1L air:")); Serial.println(data.</pre>				
	particles_03um);				
54	<pre>Serial.print(F("Particles > 0.5um / 0.1L air:")); Serial.println(data.</pre>				
	particles_05um);				
55	<pre>Serial.print(F("Particles > 1.0um / 0.1L air:")); Serial.println(data.</pre>				
	particles_10um);				
56	<pre>Serial.print(F("Particles > 2.5um / 0.1L air:")); Serial.println(data.</pre>				
	particles_25um);				
57	<pre>Serial.print(F("Particles > 5.0um / 0.1L air:")); Serial.println(data.</pre>				
	particles 50um);				
58	<pre>Serial.print(F("Particles > 10 um / 0.1L air:")); Serial.println(data.</pre>				
	particles_100um);				
59	<pre>Serial.println(F(""));</pre>				
60					
61	display.clearDisplay();				
62	display.setCursor(0, 0);				
63	<pre>display.println(F("Done taking data!"));</pre>				
64	display.display();				
65					
66	<pre>Serial.print("Done");</pre>				
67	while(1 == 1){				
68	3				

Sampling

- Warm up time of 30 seconds.
- Active mode: Stable (2.3s) Fast(200-800 ms).
- Passive transmission: Upon request.
- PM concentration (standard and environmental) and raw counts.

Technical Index

Parameter	Index	unit
Range of measurement	0.3~1.0; 1.0~2.5; 2.5~10	Micrometer (µ m)
Counting Efficiency	50%@0.3µ m 98%@>=0.5µ m	
Effective Range (PM2.5 standard)	0~500	μ g/m³
Maximum Range (PM2.5 standard) *	≥1000	μ g/m³
Resolution	1	μ g/m³
Maximum Consistency Error (PM2.5 standard data)*	\pm 10%@100~500 μ g/m 3 \pm 10 μ g/m 3 @0~100 μ g/m 3	
Standard Volume	0.1	Litre (L)
Single Response Time	<1	Second (s)
Total Response Time	≤10	Second (s)
DC Power Supply	Typ:5.0 Min:4.5 Max: 5.5	Volt (V)

Active Current	≤100	Milliampere (mA)
Standby Current	≤200	Microampere (µ A)
Interface Level	L <0.8 @3.3 H >2.7@3.3	Volt (V)
Working Temperature Range	-10~+60	°C
Working Humidity Range	0~99%	
Storage Temperature Range	-40~+80	°C
MTTF	≥3	Year (Y)
Physical Size	50 ×38×21	Millimeter (mm)

Works Cited

https://docs.smartcitizen.me/Components/sensors/air/PM%20Sensors/#working-principle

<u>https://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-</u> manual_v2-3.pdf

Debugging PM2.5 Sensor Library | by Kevin J. Walters | Nerd For Tech (medium.com)