Collecting Data with the LSM9DS1

By: Logan Barrus, Phil Coady, Aassik Pazhani, Javier Tort, Jason Vazquez
Specifications

The LSM9DS1 is not the same set of sensors as the LSM9DS0. Here are some of the differences:

- LSM9DS0 accelerometer has ±2/±4/±6/±8/±16 g ranges. The LSM9DS1 has ±2/±4/±8/±16 g (no ±6 g range).
- LSM9DS0 magnetometer has ±2/±4/±8/±12 gauss ranges. The LSM9DS1 has ±4/±8/±12/±16 gauss ranges. So the LSM9DS0 has ±2 gauss low range whereas the LSM9DS1 has ±16 gauss high range.
- LSM9DS0 and LSM9DS1 gyros both have the same ±245/±500/±2000 dps ranges.

There are other differences, for example we noticed the LSM9DS1 has slightly worse accuracy. The gyro angular zero-rate (±25 for the LSM9DS0 and ±30 for the LSM9DS1 at the highest sensing range). The accelerometer offset accuracy is ±90 mg for the LSM9DS1 and ±60 mg for the LSM9DS0.
What is an Accelerometer?

All do the same thing - measure acceleration

Different types

- Mechanical (mass on a spring)
- Piezoresistive (mass on a spring + potentiometer)
- Piezoelectric (mass on spring + crystal)
- Hall-effect (magnetic field)
- Micro Electro Mechanical System (MEMS) ← this is the one we care about
How does the MEMS work?

Simplified version- measures vibrations

1. Electrode
2. Cantilever
3. Electrical connections
4. 2nd electrode
5. 3rd electrode
6. Terminals

Our LSM9DS1 measures in units of g in increments of ±2 excluding 6g

3-axis
What is a Gyroscope?

- While an accelerometer measures movement along x, y, and z axis, gyroscope measures rotational movement along x, y, and z axis.
- Used to measure:
 - Angular velocity
 - Orientation
- Used on objects not rotating very fast.
How Does Our Gyroscope Work?

- LSM9DS1 has a MEMS Gyroscope
 - Small vibrating filament
 - When rotated, the coriolis force pushes on the filament
 - read and translated into information about rotational properties of the object.
Gyroscope Applications

- Navigation systems
 - Boats
 - Airplane stabilizers
- Virtual Reality
- Optical Image Stabilization
- Smartphones, tablets, and various controllers

iPhone 4
MEMS Gyroscope
What is a magnetometer?

- A magnetometer is a device that measures the strength and sometimes the direction of a magnetic field.
- The LSM9DS1 can sense where the strongest magnetic force is coming from and use that to approximate your heading.
- Units of gauss and can be set to measurement scale of +/- 4, 8, 12 or 16 Gs.
How do magnetometers work?

- Earth is surrounded by lines of flux which vibrate at different frequencies
- Our MEMS magnetometer measures resonant frequency

Types of magnetometers:

- Scalar magnetometers: Focus on accurately measuring the magnitude
- Vector: Measure both magnitude and direction
Magnetometer Applications

- Plasma flows: Studying solar winds and planetary bodies
- Archaeology
- Coal exploration and metal detection
- MRI: nuclear magnetic resonance
- Navigation of aircraft and ships
- Submarine detection
Wiring to Arduino

Vin - this is the power pin. Since the chip uses 3 VDC, we have included a voltage regulator on board that will take 3-5VDC and safely convert it down. The Arduino uses the 5V pin.

GND - common ground for power and logic

SCL - I2C clock pin, connect to your microcontrollers I2C clock line. This pin is level shifted so you can use 3-5V logic, and there's a 10K pullup on this pin. *(This connects to **D20 on the Arduino Mega**)*

SDA - I2C data pin, connect to your microcontrollers I2C data line. This pin is level shifted so you can use 3-5V logic, and there's a 10K pullup on this pin. *(This connects to **D21 on the Arduino Mega**)*
Other Pinouts

Power Pins:
- **3V3** - this is the 3.3V output from the voltage regulator, you can grab up to 100mA from this if you like

Interrupt & Misc Pins:
- **DEN** - this is a pin that supposedly could be used to dynamically enable/disable the Gyro. There's actually no documentation on it but we break it out for you anyways.
- **INT1 & INT2** - These are interrupts from the accelerometer/gyro subchip. We don't have specific library support for these so check the datasheet for what you can make these indicate. They are 3V-logic outputs
- **DRDY** - this is the accelerometer/gyro subchip data ready output. We don't have specific library support for these so check the datasheet for how you can set the registers to enable this pin. It is a 3V-logic output.
- **INTM** - This is the interrupt from the magnetometer subchip. We don't have specific library support for it so check the datasheet for what you can make it indicate. It is a 3V-logic output.

SPI Pins:
- **SCL** - this is also the SPI clock pin, it's level shifted so you can use 3-5V logic input
- **SDA** - this is also the SPI MOSI pin, it's level shifted so you can use 3-5V logic input
- **CSAG** - this is the Accelerometer+Gyro subchip Chip Select, it's level shifted so you can use 3-5V logic input
- **CSM** - this is the Magnetometer subchip Select, it's level shifted so you can use 3-5V logic input
- **SDOAG** - this is the Accelerometer+Gyro subchip MISO pin - it's 3V logic out, but can be read properly by 5V logic chips.
- **SDOM/DOM** - this is the Magnetometer subchip MISO pin - it's 3V logic out, but can be read properly by 5V logic chips.
- Board 3V to sensor VIN (Red)
- Board GND to sensor GND (Black)
- Board SCK to sensor SCL (Purple)
- Board MOSI to sensor SDA (Green)
- Board MISO to sensor SDOAG AND sensor SDOM (Orange)
- Board D5 to sensor CSAG (Yellow)
- Board D6 to sensor CSM (Blue)
How the code works

```
#include <wire.h>
#include <Adafruit_LSM9DS1.h>
#include <Adafruit_Sensor.h> // not used in this demo but required!

// i2c
Adafruit_LSM9DS1 lsm - Adafruit_LSM9DS1();

void setup()
{
  Serial.begin(115200);
  while (!Serial) {  // will pause Zero, Leonardo, etc until serial console opens
    delay(1);  // will pause zero, Leonardo, etc until serial console opens
  }
  Serial.println("LSM9DS1 data read demo");
  // Try to initialise and warn if we couldn't detect the chip
  if (!lsm.begin())
  {
    Serial.println("Oops ... unable to initialize the LSM9DS1. Check your wiring!");
    while (1);
  }
  Serial.println("Found LSM9DS1 9DOF");
  // 1.) Set the accelerometer range
  lsm.setAccelRange(lsm.LSM9DS1_ACCELEROMETER_2G); //Can be 4G, 8G, 16G
  // 2.) Set the magnetometer sensitivity
  lsm.setMagRange(lsm.LSM9DS1_MAGGAIN_4GAUSS); //8GAUSS, 12GAUSS, 16GAUSS
  // 3.) Setup the gyroscope
  lsm.setGyroRange(lsm.LSM9DS1_GYROSCALE_245DPS); //5000DPS, 20000DPS

  void loop()
  {
    lsm.read(); // ask it to read in the data */
    /* Get a new sensor event */
    sensors_event_t a, m, g, temp;
    lsm.getEvent(&a, &m, &g, &temp);
    Serial.print("Accel X: "); Serial.print(a.acceleration.x); Serial.print(" m/s^2");
    Serial.print("\n\tY: "); Serial.print(a.acceleration.y); Serial.print(" m/s^2");
    Serial.print("\n\tZ: "); Serial.print(a.acceleration.z); Serial.print(" m/s^2");
    Serial.print("\nMag X: "); Serial.print(m.magnetic.x); Serial.print(" uT");
    Serial.print("\n\tY: "); Serial.print(m.magnetic.y); Serial.print(" uT");
    Serial.print("\n\tZ: "); Serial.print(m.magnetic.z); Serial.print(" uT");
    Serial.print("\nGyro X: "); Serial.print(g.gyro.x); Serial.print(" rad/s");
    Serial.print("\n\tY: "); Serial.print(g.gyro.y); Serial.print(" rad/s");
    Serial.print("\n\tZ: "); Serial.print(g.gyro.z); Serial.print(" rad/s");
    Serial.println();
    delay(200);
  }

  We can set the measurement range for each sensor

Each subsensor can print the data in each degree of freedom (dimension)
```
Sources

https://www.elprocus.com/magnetometers-types-applications/
https://www.nghs.com/mri
https://opentextbc.ca/physicalgeologyh5p/chapter/earths-magnetic-field/
https://learn.adafruit.com/lis3mdl-triple-axis-magnetometer
https://learn.sparkfun.com/tutorials/lsm9ds1-breakout-hookup-guide/all#:~:text=The%20LSM9DS1%20measures%20magnetic%20fields,tons%20and%20tons%20of%20applications.
https://www.semanticscholar.org/paper/Torsional-Mems-Magnetometer-with-Vertically-Combs-Liang-Liu/d7df2e9727ef9076c29a496b830d392f09b97436
https://arcbotics.com/products/sparki/parts/magnetometer/