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Physical Constants

[ Name | Symbol Value Unit |
Numberrm T 3.14159265358979323846
Number e e 2.71828182845904523536

Euler’s constant

n—

v= lim (E 1/k — 1n(n)) = 0.5772156649
° \k=1

Elementary charge e 1.60217733 - 1019 C
Gravitational constant G, 6.67259 - 1011 m3kg~!s2
Fine-structure constant a = e?/2hceg ~ 1/137

Speed of light in vacuum c 2.99792458 - 108 m/s (def)
Permittivity of the vacuum €0 8.854187 - 10712 F/m
Permeability of the vacuum | 1y 471077 H/m
(4meg) 1 8.9876 - 10° Nm2C—2
Planck’s constant h 6.6260755 - 10734 Js

Dirac’s constant h=h/2r 1.0545727 - 10734 Js

Bohr magneton up = eh/2me 0.2741 - 10~24 Am?

Bohr radius ao 0.52918 A
Rydberg’s constant Ry 13.595 eV
Electron Compton wavelength Ace = h/mec 2.2463 - 1012 m

Proton Compton wavelength| Acp, = h/mpe 1.3214-1071 m
Reduced mass of the H-atom py 9.1045755 - 1031 kg
Stefan-Boltzmann’s constant| o 5.67032- 1078 Wm—2K 4
Wien’s constant kw 2.8978 - 1073 mK

Molar gasconstant R 8.31441 Jdnol~1.K~1
Avogadro’s constant Na 6.0221367 - 103 mol~!
Boltzmann’s constant k= R/Nx 1.380658 - 10~23 JIK
Electron mass Me 9.1093897 - 1031 kg

Proton mass mp 1.6726231 - 10727 kg
Neutron mass M 1.674954 - 10~27 kg
Elementary mass unit my = 5m(¢C) 16605656 - 10~27 kg
Nuclear magneton 1N 5.0508 - 1027 JT
Diameter of the Sun Dg 1392 - 109 m

Mass of the Sun Mg 1.989 - 1030 kg
Rotational period of the Sun | T 25.38 days
Radius of Earth Ry 6.378 - 106 m

Mass of Earth M 5.976 - 10%* kg
Rotational period of Earth T 23.96 hours
Earth orbital period Tropical year 365.24219879 days
Astronomical unit AU 1.4959787066 - 101! m

Light year lj 9.4605 - 10*° m

Parsec pc 3.0857 - 1016 m

Hubble constant H ~ (75 £ 25) km-s~1-Mpc—!




Chapter 1

Mechanics

1.1 Point-kinetics in a fixed coordinate system

1.1.1 Definitions

The position”, the velocity’ and the acceleratio# are defined byr = (z,y, 2), ¥ = (2,9, £), d = (£, 9, 2).
The following holds:

s(t) = so+ / |U(t)|dt ; 7(t) = 7o + /U(t)dt; o(t) = o —i—/&(t)dt

When the acceleration is constant this giveg) = vy + at ands(t) = so + vot + Fat?,
For the unit vectors in a directian to the orbite; and parallel to i€, holds:

v dr 5w €%

" ds

t =

|7

For thecurvaturek and theradius of curvaturep holds:

podh _ A _|dy
T ds  ds? |ds

) p_
||

1.1.2 Polar coordinates

Polar coordinates are defined by: = rcos(), y = rsin(d). So, for the unit coordinate vectors holds:
é. = 0&y, ey = —0é,

The velocity and the acceleration are derived frote: ré,, ¢ = i€, +r0éy, @ = (i — r62)&, + (270 +16)é;.

1.2 Relative motion

G X To . - .
Q with QD = 7p — i andw = 6.

For the motion of a point D w.r.t. a point Q holdgy = rg + 5
w

Further holds:o = 6. / means that the quantity is defined in a moving system of coordinates. In a moving
system holds:

T=tq+ v +dx7andi=dq+a +a X7 +20x 7" +dJ x (Jx7')

with & x (& x 7') = —w?7!,

1.3 Point-dynamics in a fixed coordinate system

1.3.1 Force, (angular)momentum and energy

Newton’s 2nd law connects the force on an object and the resulting acceleration of the object wheoe the
mentums given byp = m:

- dp d(m7) dv  _dm m=const _
=2 = =" md
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Newton’s 3rd law is given byﬁaction =— q,eaction.
For the power” holds: P = W = F - . For the total energyV, the kinetic energ{/’ and the potential energy
UholdsW =T+U; T=-UwithT = %va.

Thekick S is given by:S = Ay = / Fdt
2 2
The work A, delivered by a force, isl = /ﬁ L d5 = /Fcos(a)ds
1 1

The torquer is related to the angular momentuin 7 = L = 7 x E; and
L =7 x p=mt x 7, |L| = mr’w. The following equation is valid:

v
26

T =

Hence, the conditions for a mechanical equilibrium &@f; = 0 and>_ 7 = 0.

Theforce of frictionis usually proportional to the force perpendicular to the surface, except when the motion
starts, when a threshold has to be overcofig: = f - Frorm - €.

1.3.2 Conservative force fields

A conﬁservative force can be written as the gradient of a potenﬁ&gl,;S = —VU. From this follows that
V x F = 0. For such a force field also holds:

71
j{ﬁ.dgzo = U:UO—/ﬁ-d§
T0

So the work delivered by a conservative force field depends not on the trajectory covered but only on the
starting and ending points of the motion.

1.3.3 Gravitation
The Newtonian law of gravitation is (in GRT one also usésstead of;):

= mims _,

F,=-G ”

r2

The gravitational potential is then given by= —Gm /r. From Gauss law it then follows7?V = 47 Go.

1.3.4 Orbital equations
If V= V(r) one can derive from the equations of Lagrangefthhe conservation of angular momentum:

% = % =0= %(mr%) =0= L, = mr’¢ = constant
For the radial position as a function of time can be found that:
(dr>2 oW -V) L?

dt) m  m2p2

The angular equation is then:

r ez 20W —v) 12
d)%_/lmg\/( m )7m27"2

0

o ~2field i1
dr” ="“arccos |14+ —L—T0
< % + km/L?
0

If F = F(r): L =constant, ifF" is conservativel¥’ =constant, iff' 1 7thenAT = 0 andU = 0.
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Kepler’s orbital equations

In a force fieldF = kr—2, the orbits are conic sections with the origin of the force in one of the foci (Kepler's
1st law). The equation of the orbit is:

/
= —" orz24+yi=(—-ex)?
r(®) 1+ ¢ecos(f —6) Tty (¢~ ex)
with ) ) ’ ¢
L 2W L k
(= . 2 -1 =1—-=": - =
G, - T 't e, o’ T1oe2 T ow

a is half the length of the long axis of the elliptical orbit in case the orbit is closed. Half the length of the short
axis isb = v/al. ¢ is theexcentricityof the orbit. Orbits with an equal are of equal shape. Now, 5 types of
orbits are possible:

1. k < 0ande = 0: acircle.

2. k< 0and0 < ¢ < 1: an ellipse.

3. k < 0ande = 1: a parabole.

4. k < 0 ande > 1: a hyperbole, curved towards the centre of force.
5. k > 0 ande > 1: a hyperbole, curved away from the centre of force.

Other combinations are not possible: the total energy in a repulsive force field is always positivelso

If the surface between the orbit covered betweeandt, and the focus C around which the planet moves is
A(ty,12), Kepler's 2nd law is

L¢
Aty,t) = —(ta — ¢
( 1 2) Qm( 2 1)
Kepler's 3rd law is, withl" the period and\/,; the total mass of the system:
Yi _ 472
CL3 o GMtot

1.3.5 The virial theorem

The virial theorem for one particle is:

<m?7'77>=0:><T>=—§<ﬁ'F>=§<rcfl[i>=§n(U> N

The virial theorem for a collection of particles is:

<T>—§< > Eﬁ*zﬁmfm>

particles pairs

These propositions can also be written 285, + Epor = 0.

1.4 Point dynamics in a moving coordinate system

1.4.1 Apparent forces

The total force in a moving coordinate system can be found by subtracting the apparent forces from the forces
working in the reference framd?’ = F' — F,,,. The different apparent forces are given by:

1. Transformation of the origink,, = —ma,
2. Rotation:F, = —ma x 7’
3. Coriolis force:F.,, = —2md X U

i - . - - muv
4. Centrifugal forceFys = mw?r,' = —Fop ; Fop = R
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1.4.2 Tensor notation

Transformation of the Newtonian equations of motion:to= x*(z) gives:

dt — 0xP dt’
The chain rule gives:

d dx® A2z _d <8xa dxﬁ) _ 0x® d?z8 dzP d (8:6“)

dt dt  d?  dt\0zf dt ) 0zf iz dt dt \9zP
So:
Ao 0 datdr o d
dt 078  0zv 078 dt  9TPOTY dt
This leads to:

Pat _0x P3P Pat da (di
2 9xP dt2 - 0zPoxTY dt \ dt
Hence the Newtonian equation of motion
mdzx“
dt?

d?ze dx? dx
- I‘a - — FO(
m{ az dt}

[e3

will be transformed into:

B dpY
The apparent forces are taken from he origin to the effect side in th@@@%{%%.

1.5 Dynamics of masspoint collections
1.5.1 The centre of mass

The velocity w.r.t. the centre of magsis given byv — R. The coordinates of the centre of mass are given by:

7= > Mt
m
>omi

In a 2-particle system, the coordinates of the centre of mass are given by:

Ao M7 + maTs
mi + mo

With ¥ = 7, — 75, the kinetic energy become§. = %MtotRQ + %mﬁ, with thereduced masg given by:
1

gooomio mg )
The motion within and outside the centre of mass can be separated:

=

Loutsidc = Toutside 3 Linsidc = Tinside

—
—

D=mlyn; Foxx =may; Fio=pu

1.5.2 Collisions

With collisions, where B are the coordinates of the collision and C an arbitrary other position, jietds:v,,
is constant, and’ = %mﬁﬁl is constant. The changes in tiedative velocitiexan be derived fromS = Ap' =

(1(Tage — Toefore). Further holdsALe = CB x §, 7 | S =constant and: w.r.t. B is constant.
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1.6 Dynamics of rigid bodies

1.6.1 Moment of Inertia

The angular momentum in a moving coordinate system is given by:
L'=13+ L
wherel is themoment of inertiavith respect to a central axis, which is given by:

I=Y mii % T =W = 3wli;éié; = 310
1

I= %/r'deVZ /r'idm

1] . _ . _ _ 2 : ro0
Li:Iij, Ii'_lia Iij—Iji—_ mka:ixj
k

or, in the continuous case:

Further holds:

Steiner’s theorem isly, , + p = Iy.r.t.c + m(DM)? if axis C|| axis D.

| Object | I | Object I |
Cavern cylinder I =mR? Massive cylinder I=1imR?
Disc, axis in plane disc through m I = 1mR? Halter = 1uR?
Cavern sphere I =2mR? Massive sphere I = 2mR?
Bar, axis_L through c.o.m. I =4 mi? Bar, axis_L through end = mi?
Rectangle, axis. plane thr. c.o.m/| I = Lm(a? +b?) || Rectangle, axig bthr. m | I = ma?

1.6.2 Principal axes
Each rigid body has (at least) 3 principal axes which starid each other. For a principal axis holds:

oI oI oI

= = =0soL =0
Owy  Owy  Ow, "
. . . IL—1; .
The following holdswy, = —a;j,wiw; With a;;;, = if [ <1y <Is.
1.6.3 Time dependence
For torque of forcer holds:
d//L/ ,

ThetorqueT' is defined byT = F x d.

1.7 Variational Calculus, Hamilton and Lagrange mechanics

1.7.1 Variational Calculus
Starting with:

b
du

5/£(q,(j,t)dt — 0 with 6(a) = 3(b) =0 and & (dx> =4 s

a
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the equations of Lagrange can be derived:

doL _oc
dt9g; g
When there are additional conditions applying to the variational probdeitu) = 0 of the type

K (u) =constant, the new problem becomég(u) — AdK (u) = 0.

1.7.2 Hamilton mechanics

TheLagrangianis given by: £ = > T(¢;) — V(¢;). TheHamiltonianis given by: H = > ¢;p; — L. In 2
dimensions holdsC = T — U = im(#* + r2¢?) — U(r, ¢).
If the used coordinates acanonicalthe Hamilton equations are the equations of motion for the system:
@ - OH . dpi - _8H
dt — op; dt  Og

Coordinates are canonical if the following holds;, ¢;} = 0, {p:,p;} =0, {¢:,p,;} = d;; where{, } is the
Poisson bracket DAOB  OAOB
A, B} = —
{ ’ } 21: [3% dpi  Op; Oq;

The Hamiltonian of a Harmonic oscillator is given B§(z, p) = p?/2m + $mw?z?. With new coordinates

(0, I), obtained by the canonical transformatior- /21 /mw cos(f) andp = —v/2I'mw sin(#), with inverse
6 = arctan(—p/mwz) andI = p?/2mw + tmwz? it follows: H(0,1) = wl.

The Hamiltonian of a charged particle with charge an external electromagnetic field is given by:
1 -\ 2
H=o (5-ad) +qv
2m

This Hamiltonian can be derived from the Hamiltonian of a free parfitle p?/2m with the transformations

P —p— q/f andH — H — ¢V. This is elegant from a relativistic point of view: this is equivalent to the
transformation of the momentum 4-vecigt — p* — ¢A“. A gauge transformation on the potential§
corresponds with a canonical transformation, which make the Hamilton equations the equations of motion for
the system.

1.7.3 Motion around an equilibrium, linearization

For natural systems around equilibrium the following equations are valid:

8\/) . 02V
=0; V(g =V(0)+ Vikgiq WlthVi:< >
(5. (@) = VO + Vg win Vi = (200)
With T = %(Mikqiqk) one receives the set of equatials] + V¢ = 0. If ¢;(t) = a; exp(iwt) is substituted,
this set of equations has solutionslift(V — w?M) = 0. This leads to the eigenfrequencies of the problem:

9 agVak
Wy = T

a; May,

eigenvibrations.

. If the equilibrium is stable holdsvk thatw? > 0. The general solution is a superposition if

1.7.4 Phase space, Liouville’s equation

In phase space holds:

9 9 L 0 0H 0 0H
Vo (;&;/;%) SOV'U—Z(aqiapi _8p18qi>

)

If the equation of continuityp;o + V - (0¢) = 0 holds, this can be written as:

do
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For an arbitrary quantityl holds:

dA
dt
Liouville’s theorem can than be written as:
do
= —=0:
dt '

1.7.5 Generating functions

Starting with the coordinate transformation:

{

0A

or: / pdq = constant

Qi = Qi(qi, pist)
Pi = Pl(ql,put)

one can derive the following Hamilton equations with the new Hamiltofian

dQ; _

oK

P, 0K

dat 0P’

dt — 0Q;

Now, a distinction between 4 cases can be made:

0F,

DPi Tqi;

2. Ifpigi — H=—P,Q; — K(P;,Q;,t) +

- OFy
pi = dq;

3. If —pigi — H = P,Q; — K(P;,Q;,t) +

OF;
Op; ’

qi =

4. If —p;q; — H = —PQ; — K(P;,Q;,t) +
o 73F4 )
qi = 61)2‘ 5

_ dFi(gi, Qi)

dFQ(unZ;t)

dFs(pi, Qi,t)

dFy(pi, Pi,t)

il , the coordinates follow from:

__9h
(2 aQ’L’

OF,
iy
o

o , the coordinates follow from:

or,
OP;’

K—n+22

Qi = ot

o , the coordinates follow from:

R

o . OF3
(2 aQ’L I

iy
o

7 , the coordinates follow from:

iaF4
B api’

OF,
Ny !
o

Qi

The functionsF}, Fs», F3 andF} are calledgenerating functions
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Relativity

3.1 Special relativity

3.1.1 The Lorentz transformation

The Lorentz transformatiofit’, t') = (Z'(Z,t), ¢ (Z,t)) leaves the wave equation invariantifs invariant:

9? 0? 02 1 62 0? 0? 9? 1 92

02 T "o 2o o1 oy 07 o

This transformation can also be found whést = ds’? is demanded. The general form of the Lorentz
transformation is given by:

— 17 -v)T T U
o DEDT_ gy (1 E)
C

where

The velocity difference’’ between two observers transforms according to:

. -1 S
N U1 - V2 ~ U1 V2 -
012(7(1—02>> (v2+(’y—1) 5 vl—fyvl>

If the velocity is parallel to the-axis, this becomeg = y, 2’ = 2 and:

/

' =v(x—vt), = +ot)

v x'v Uy — U1
t/:’}/(t—g) y t:’}/<t/+62) 5 U/:W

If ¥ = ve, holds:
W
jo :’Y<Pm— BC) , W=~(W —vp,)

With g = v/c the electric field of a moving charge is given by:

Q (1 _ﬂQ)gr

E =
dmegr? (1 — (42 sin?(6))3/2

The electromagnetic field transforms according to:

. L o - . UxE
E' =~v(FE+vxB) , B/:7<B— 5 >

C

Length, mass and time transform according &y, = yAtg, m, = ymyg, I, = lo/~, with o the quantities
in a co-moving reference frame andhe quantities in a frame moving with velocityw.r.t. it. The proper
time 7 is defined asdr? = ds?/c?, soAr = At/~. For energy and momentum hold§! = m,c? = yW,
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W2 = m3ct + p?c®. p = mpv = ymov = Wu/c?, andpc = W 3 where3 = v/c. Theforceis definedby
F = dpjdt.
4-vectors have the property that their modulus is independent of the observer: their companehiznge
after a coordinate transformation but not their modulus. The difference of two 4-vectors transforms also as
a 4-vector. The 4-vector for the velocity is given by* = di The relation with the “common” velocity
, . , T
u' = dx'/dt is: U® = (yu',icy). For particles with nonzero restmass hol@&'U, = —c?, for particles

with zero restmass (so with = ¢) holds: U~U, = 0. The 4-vector for energy and momentum is given by:
p* = moU® = (yp*,iW/c). SO:pap® = —mic? = p*> — W?2/c2.

3.1.2 Red and blue shift

There are three causes of red and blue shifts:

/

1. Motion: withé, - €. = cos(y) follows: F=1 1 veos(e)

C
This can give both red- and blueshift, alsdo the direction of motion.

2. Gravitational redshift:A—f = ﬂ
f rc2

3. Redshift because the universe expands, resulting in e.g. the cosmic background radiation:
Ao  Ro

N Ry
3.1.3 The stress-energy tensor and the field tensor

The stress-energy tensor is given by:
1
Tl“/ = (QC2 -i-p)u#ul, -HUQW + 672 (FyaFg + igleaﬁFag)

The conservation laws can than be written¥s7#” = 0. The electromagnetic field tensor is given by:

045 04,

Fag= 220
B~ oz 9aB

with A, := (A4,iV/c) and.J, := (J,icp). The Maxwell equations can than be written as:
81/Fl“/ = PJOJ# ) akl?/u/ + aqu)\ + al/F)\/L =0

The equations of motion for a charged particle in an EM field become with the field tensor:

dpa
=2 = gF,5u”
dr 45 apt

3.2 General relativity

3.2.1 Riemannian geometry, the Einstein tensor
The basic principles of general relativity are:

1. The geodesic postulate: free falling particles move along geodesics of space-time with the proper time
7 or arc lengths as parameter. For particles with zero rest mass (photons), the use of a free parameter is
required because for them holds = 0. Fromd [ ds = 0 the equations of motion can be derived:

d?z o, dzP dxy

ds2 P ds ds
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2. Theprinciple of equivalenceinertial mass= gravitational mass=- gravitation is equivalent with a
curved space-time were particles move along geodesics.

3. By a proper choice of the coordinate system it is possible to make the metric locally flat in each point
2t gap(Ti) = Nap :=diag—1,1,1,1).

TheRiemann tensos defined ast,‘aﬁT" = V,VgTH —-VsV,TH, where the covariant derivative is given
by Vjai = (’)ja" + I‘;kak andeai = ajai — I‘fjak. Here,

;g (391]‘ n g 99,k 0%zl oxt

OxI Ok ozl’

=5 \ ok T 5 9l ) , for Euclidean spaces this reducesig; =

are theChristoffel symbolsFor a second-order tensor holdS.,,, Vs|T) = Rl ;T + R], TV, Via) =
Opa; —I‘Ljaf +T},a}, Viai; = Opai; — T, —l"i,jajl andV,a" = dpa'l +T%,aY +T7,a". The following
. (o3 — (03 (e} « o [ a
holds: RS, = 9,I'5, — 9,I', +T5,I'5, —T5,TG,.
The Ricci tensoris a contraction of the Riemann tensat., s := Rguﬁ' which is symmetric:R.3 = Rga.
TheBianchi identitiesare: VaRoguw + Vo Ragan + VuRagur = 0.
The Einstein tensoiis given by: G*# := R*# — 14 R, whereR := R? is theRicci scalar for which
holds: V3Gag = 0. With the variational principle j(c_(gw) — Rc?/16mk)+/|g|d*x = 0 for variations
9 — 9uv + 09, theEinstein field equationsan be derived:

8 ; . 8
Gap = gTaﬁ , which can also be written asR,g = g(TQB — 59a5T%)
C C

For empty space this is equivalenta,s = 0. The equatiorR,z,, = 0 has as only solution a flat space.

The Einstein equations are 10 independent equations, which are of second gggerRrom this, the Laplace
equation from Newtonian gravitation can be derived by stating: = 7., + k.., where|h| < 1. In the
stationary case, this resultsWhoo = 8mko/c.

) . 8
The most general form of the field equationsis; s — %gaﬁR + Agop = LQKTQQ
C

whereA is thecosmological constanfThis constant plays a role in inflatory models of the universe.

3.2.2 The line element
, : : o oz* ok
Themetric tensoiin an Euclidean space is given by; = — .
- ox* Oxd

In general holdsds? = g, dz"dz". In special relativity this becomes? = —c?dt? + daz? + dy? + dz°.
This metric,n,,, :=diag(—1, 1,1, 1), is called theMinkowski metric

Theexternal Schwarzschild metrapplies in vacuum outside a spherical mass distribution, and is given by:
2m om\ !
ds* = (—1 + T) Adt* + (1 — T) dr? + r2dQ?

Here,m := Mr/c? is thegeometrical massf an object with mas3/, anddQ? = d6? + sin? fdp>. This
metric is singular for = 2m = 2xM/c?. If an object is smaller than its event horizdm, that implies that
its escape velocity is- ¢, it is called ablack hole The Newtonian limit of this metric is given by:

ds® = —(1 4 2V)2dt? + (1 — 2V)(da? + dy* + dz?)

whereV = —xM/r is the Newtonian gravitation potential. In general relativity, the componengg,ofre
associated with the potentials and the derivativeg,ofwith the field strength.

The Kruskal-Szekeres coordinates are used to solve certain problems with the Schwarzschild metric near
r = 2m. They are defined by:
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o 7> 2m!
r r t
u = — —lexp (—) cosh [ —
2m 4 am
t
vo= ﬁ —lexp (—) sinh <4m>
o r < 2m:
t
U = 1-— ﬁ exp (4—) sinh <4m>

/ r T t
v o= 1-— % exp (m) cosh (47n)

e r = 2m: here, the Kruskal coordinates are singular, which is necessary to eliminate the coordinate
singularity there.

The line element in these coordinates is given by:

3
32m e—7'/2m

ds® = — (dv? — du?) + r2dQ?

r

The liner = 2m corresponds ta = v = 0, the limitz° — oo with u = v andz® — —oo with u = —v. The
Kruskal coordinates are only singular on the hyperhgle- +? = 1, this corresponds with = 0. On the line
dv = tdu holdsdf = dy = ds = 0.

For the metric outside a rotating, charged spherical mass the Newman metric applies:

2mr — 2 r2 1 a2 cos? 0
d2 — 1- —-— - 2dt2— d2_ 9 9 20d92_
’ ( T2+a200526>c 2 —omrta2—e2) (r* 4 a” cos™0)

s o (2mr —e?)a?sin? 6 2. 2 2a(2mr — )\ .,
(T’ +a® + T2—|—a2 COS29 Sin Gdgp =+ m Sin 9(d<p)(cdt)

wherem = kM/c? a = L/Mc ande = kQ/eoc?.
A rotating charged black hole has an event horizon \iligh= m + vm?2 — a2 — e2.

Near rotating black holes frame dragging occurs becguse~ 0. For the Kerr metric = 0, a # 0) then
follows that within the surfac&®g = m + vm?2 — a2 cos? 6 (de ergosphere) no particle can be at rest.

3.2.3 Planetary orbits and the perihelion shift

To find a planetary orbit, the variational problénf ds = 0 has to be solved. This is equivalent to the problem
§ [ds? =6 [ g;jdx'dz? = 0. Substituting the external Schwarzschild metric yields for a planetary orbit:

de d27u+u —d—u(?)mu—i-ﬁ)
dp \ dp? dy h?

whereu := 1/r andh = r%p =constant. The terrmu is not present in the classical solution. This term can

. . ) kM h?
in the classical case also be found from a poteitfial) = ——— (1 + — |.
r T

The orbital equation gives=constant as solution, or can, after dividingdyy/ d, be solved with perturbation
theory. In zeroth order, this results in an elliptical orhiti(¢) = A + B cos(¢) with A = m/h? andB an
arbitrary constant. In first order, this becomes:

B? B?
u1(p) = A+ Bceos(p —ep) + ¢ <A + A 64 cos(2<p))
wheres = 3m?/h? is small. The perihelion of a planet is the point for whiclis minimal, oru maximal.
This is the case ifos(p — cp) = 0 = ¢ =~ 27n(1 + ). For the perihelion shift then followsAy = 27e =
67m?/h? per orbit.
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3.2.4 The trajectory of a photon

For the trajectory of a photon (and for each particle with zero restmass) tields- 0. Substituting the
external Schwarzschild metric results in the following orbital equation:

du [ d*u
w((W—FU—?)mu) =0

3.2.5 Gravitational waves

Starting with the approximation,,, = 7., + h,, for weak gravitational fields and the definitiohjw =
R — Anu b it follows that] h;,,, = 0 if the gauge conditiodh],, /0x” = 0 is satisfied. From this, it

follows that the loss of energy of a mechanical system, if the occurring velocitieg arand for wavelengths
> the size of the system, is given by:

dE G« (QyuY
dt ~ 5cP v dt3

with Q;; = [ o(z;z; — £6;;r?)d*x the mass quadrupole moment.

3.2.6 Cosmology

If for the universe as a whole is assumed:
1. There exists a global time coordinate which acts%sf a Gaussian coordinate system,
2. The 3-dimensional spaces are isotrope for a certain valu®, of
3. Each point is equivalent to each other point for a fixéd

then theRobertson-Walker metrican be derived for the line element:

R*(t)

kr?
2 1— —

For thescalefactorR(¢) the following equations can be derived:

ds* = —cdt* + (dr? + r2d0?)

2R R%?+kc? 8mKp
— =— A and
R + R? c2 + R? 3 3
wherep is the pressure and the density of the universe. K = 0 can be derived for theleceleration
parametery:

R+ ke 8mko A
= +

RR _ 4mne
Rz 3H?2
whereH = R/R is Hubble’s constant This is a measure of the velocity with which galaxies far away are

moving away from each other, and has the vatugrs +25) km-s~1-Mpc—1. This gives 3 possible conditions
for the universe (herd}’ is the total amount of energy in the universe):

q:

1. Parabolical universe £k =0, W =0, q = % The expansion velocity of the universe 0 if ¢ — oo.
The hereto relatedritical densityis o. = 3H?/87k.

2. Hyperbolical universe: £k = -1, W < 0, ¢ < % The expansion velocity of the universe remains

positive forever.

3. Elliptical universe: k=1, W > 0, ¢ > % The expansion velocity of the universe becomes negative
after some time: the universe starts collapsing.
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Oscillations

4.1 Harmonic oscillations

The general form of a harmonic oscillation iB(t) = We!(“!£#) = cos(wt + ¢),

where¥ is theamplitude A superposition of several harmonic oscillationi¢h the same frequencegsults in
another harmonic oscillation: R R
Z U, cos(a; + wt) = P cos(f £ wt)

i

with: .
>0, sin(ay)
tan =t _ and $*= @?4—2 U, 0. cos(ay; —
9= i LED DR ATLCE
For harmonic oscillations holds/x(t)dt = % and%r(f) = (iw)"z(t).

4.2 Mechanic oscillations

For a construction with a spring with constantparallel to a damping which is connected to a masg, to
which a periodic forceF'(t) = F cos(wt) is applied holds the equation of motieni = F(t) — k& — Cx.
With complex amplitudes, this becomesnw?z = F — Cz — ikwx. With w3 = C'/m follows:

F

T = and for the velocity holds:i = __F
m(wg — w?) + tkw ivCmd + k
wherej = wi - %. The quantityZ = F/i is called thampedancef the system. Theguality of the system
0
is given byQ = %

The frequency with minimalZ| is calledvelocity resonance frequencyhis is equal tav. In theresonance
curve|Z|/v/Cm is plotted against /wy. The width of this curve is characterized by the points wh&(e)| =
|Z(wo)[v/2. In these points holds? = X ands = +Q~*, and the width i2Awp = wy/Q.

Thestiffnesof an oscillating system is given by/x. Theamplitude resonance frequency is the frequency
whereiwZ is minimal. This is the case fary = wg4/1 — %QQ.

Thedamping frequencyp is a measure for the time in which an oscillating system comes to rest. It is given

1 N . -,
bywp = woy /1 — ITOER A weak damped oscillatiofk? < 4m() dies out aftefl, = 27 /wp. For acritical
dampedoscillation (k2 = 4m(C') holdswp = 0. A strong damped oscillatiofk? > 4mC) drops like (if
k2 > 4mC) z(t) =~ xg exp(—t/T).

4.3 Electric oscillations
Theimpedancds given by: Z = R + iX. The phase angle ig := arctan(X/R). The impedance of a

resistor isR, of a capacitod /iwC and of a self inductoiw L. The quality of a coil iS) = wL/R. The total
impedance in case several elements are positioned is given by:
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1. Series connectiorV = 17,
G =70 L= Li. === Q=2 z-R(1+iQs)
B i Ctot 7 Cz R
2. parallel connectionV = 17,

1 1 1 1 R R
S =Y Gu=YC Q= D=
Ztot ;&7 Lot . L;” Z @ A 1+1¢Q0

L 1
Here,Zy = {/ = andwy = —.
c vLC

The power given by a source is given Byt) = V (t) - I(t), SO(P), = Vg It cos(A¢)
= %Vf cos(py — @) = %ﬁRe(Z) = %VQRe(l/Z), wherecos(Ag) is the work factor.

4.4 Waves in long conductors

dL dx

These cables are in use for signal transfer, e.g. coax cable. For them Hglés T dC

The transmission velocity is given by= 4/ Z—E%

4.5 Coupled conductors and transformers

For two coils enclosing each others flux holds®if; is the part of the flux originating fromy, through coil 2

which is enclosed by coil 1, than holds, = Mis15, ®21 = Moy 1. For the coefficients of mutual induction

Mij holds:

N1®;  Na®y
I, I

where0 < k < 1 is thecoupling factor For a transformer is ~ 1. At full load holds:

i _ L_ wM L M
Vo I,  iwLy+ Riaa  VIa Ny

M12:M21 =M=k L1L2:

4.6 Pendulums
The oscillation timel” = 1/ f, and for different types of pendulums is given by:
e Oscillating springT” = 2w+/m/C if the spring force is given by’ = C - Al.

e Physical pendulumf’ = 274/ /7 with 7 the moment of force anflthe moment of inertia.

. . 21 . N
e Torsion pendulum? = 27/1/k with k = % the constant of torsion andthe moment of inertia.
P

mrd

e Mathematical pendulumi’ = 27/1/g with g the acceleration of gravity arithe length of the pendu-
lum.
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Waves

5.1 The wave equation
The general form of the wave equationlisu = 0, or:

1 0%u  O%u  0%*u  O%*u 1 9%u

T A N
YTz e 8x2+8y2+8z2 v2 Ot2

=0
whereuw is the disturbance and the propagation velocity In general holdsy = f\. By definition holds:
kXA =27 andw = 27 f.
In principle, there are two types of waves:

1. Longitudinal waves: for these holds| 7 || .

2. Transversal waves: for these hoEjﬁ OTH
Thephase velocitys given byv,,,, = w/k. Thegroup velocityis given by:

_dw dvpn k dn
Vg = g = Vo TR = e (1 ndk)

wheren is the refractive index of the medium. 4f,;, does not depend an holds: v, = v,. In a dispersive
medium it is possible that, > vy, Or vy < vph, andug - ve = c2. If one wants to transfer information with

a wave, e.g. by modulation of an EM wave, the information travels with the velocity at with a change in the
electromagnetic field propagates. This velocity is often almost equal to the group velocity.

For some media, the propagation velocity follows from:

e Pressure waves in a liquid or gas= +/r/0, wheres is the modulus of compression.

For pressure waves in a gas also holds: \/yp/o = \/YRT /M.

Pressure waves in a thin solid bar with diametet A: v = /E/p

waves in a stringy = \/Fspanl/m

Surface waves on a liquid: = \/<g)\ + Qm) tanh (%h>

27 oA A
whereh is the depth of the liquid angl the surface tension. < \ holds:v ~ /gh.
5.2 Solutions of the wave equation
5.2.1 Plane waves

In n dimensions a harmonic plane wave is defined by:

u(E,t) = 2" cos(wt) » _ sin(kiz;)

i=1
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The equation for a harmonic traveling plane waveu?, t) = @ cos(k - & + wt + )

If waves reflect at the end of a spring this will result in a change in phase. A fixed end gives a phase change of
7/2 to the reflected wave, with boundary conditiefi) = 0. A lose end gives no change in the phase of the
reflected wave, with boundary conditiéfiu/dz); = 0.

If an observer is moving w.r.t. the wave with a velocity,s, he will observe a change in frequency: the

Doppler effect This is given by:fi _ UL~ Yobs
0 (%3

5.2.2 Spherical waves

When the situation is spherical symmetric, the homogeneous wave equation is given by:
1 0%(ru)  0%(ru)

il =0
2 o o

with general solution:

f(r—ot) N 029(7’ + vt)

u(r,t) = Cy . .

5.2.3 Cylindrical waves

When the situation has a cylindrical symmetry, the homogeneous wave equation becomes:

10%w 10 ou 0

Sl R N (P

vZ2 Ot2  ror \' or
This is a Bessel equation, with solutions which can be written as Hankel functions. For sufficient large values
of r these are approximated by:

u(r,t) = L cos(k(r + vt))

\/,F

5.2.4 The general solution in one dimension

Starting point is the equation:
0%u(x,t al om
T) = Z (bm&vm) u(z,t)
m=0
whereb,,, € IR. Substitutingu(z,t) = Ae!**~«) gives two solutionss; = w;(k) as dispersion relations.
The general solution is given by:
u(z,t) = / (alkyer 90 4 p(gpei o= )

Because in general the frequenaigsare non-linear irk there is dispersion and the solution cannot be written
any more as a sum of functions depending onlyzah vt: the wave front transforms.

5.3 The stationary phase method

Usually the Fourier integrals of the previous section cannot be calculated exactjyk)f< IR the stationary

phase method can be applied. Assuming ia) is only a slowly varying function ok, one can state that the

parts of thek-axis where the phase &ft — w(k)t changes rapidly will give no net contribution to the integral
because the exponent oscillates rapidly there. The only areas contributing significantly to the integral are areas

with a stationary phase, determined gz(lm — w(k)t) = 0. Now the following approximation is possible:

o0

N
. 2
/ a(k)el(km—w(k)t)dk ~ E WZC) exXp [—Ziﬂ' + Z(kﬁ;‘ - W(k‘l)t)]
i=1 dk?

— 00
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5.4 Green functions for the initial-value problem

This method is preferable if the solutions deviate much from the stationary solutions, like point-like excitations.

Starting with the wave equation in one dimension, With= 92 /922 holds: if Q(x, 2’, t) is the solution with

0Q(z,a',0)
ot

= §(z — z’), then the solution of the wave equation with arbitrary initial

ou(x,0) .

initial valuesQ(x,2’,0) = é(x — ') and = 0, and P(z, 2/, t) the solution with initial values
OP(z,2',0)
ot

conditionsf(z) = u(x,0) andg(z) =

P(z,2’,0) = 0 and
is given by:

o0

u(z, t) = /f(x’)Q(x,x',t)dx'—&— /g(x')P(m,x’,t)dx’

P and@ are called theoropagators They are defined by:
Qz,2',t) = 3[6(x—a" —vt)+ (-2’ +vt)]
{ if |z—2a'| <wvt

if |x—a'| > vt

P(x,2't)

OP(x,2',t)

Further holds the relatiorQ(z, 2, t) = o

5.5 Waveguides and resonating cavities

The boundary conditions for a perfect conductor can be derived from the Maxwell equationss dfunit
vector L the surface, pointed from 1 to 2, aikdis a surface current density, than holds:

(D2~ D)=
(B2 —B1) =0

ISTRST]

In a waveguide holds because of the cylindrical symmetfy(z,t) = &(x,y)e!**=“") and B(Z,t) =
B(z,y)e'**~«t), From this one can now deduce thatBif and€, are not= 0:

5 — i %_E wagz B i k@BZ . wasz
T epw? — k2 Oz K8y Y epw? — Jy He o

s _ i &, . waBz e _ i k%fs w@Bz
T euw? — k2 ox K Oy Y euw? — k2 Oy K or

Now one can distinguish between three cases:

1. B, = 0: the Transversal Magnetic modes (TM). Boundary conditt;,..¢ = 0.

=0.

2. E, = 0: the Transversal Electric modes (TE). Boundary COHdItIEgF

surf

For the TE and TM modes this gives an eigenvalue probler§ foesp.3, with boundary conditions:

2 2
(aicz + 88yz> i) = —*y with eigenvaluesy® := epw? — k*

This gives a discrete solutiof, with eigenvaluey?: k = /euw? — vi. Forw < wy, k is imaginary
and the wave is damped. Therefoue, is called thecut-off frequency In rectangular conductors the
following expression can be found for the cut-off frequency for modeg TBf TM,,, .

2

Ao =
(m/a)? + (n/b)?
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3. E, and B, are zero everywhere: the Transversal electromagnetic mode (TEM). Than folés:
tw,/ep andvs = vy, just as if here were no waveguide. Furtiiee IR, so there exists no cut-off
frequency.

In a rectangular, 3 dimensional resonating cavity with edgésandc the possible wave numbers are given

by: k, = AT ky = sz . k. = 2T This results in the possible frequencigs- vk /2r in the cavity:
C
v [n2 ng  on?
I=VNeteta

For a cubic cavity, withu = b = ¢, the possible number of oscillating mod&$, for longitudinal waves is
given by:

4mad f3
Ne = 3v3

Because transversal waves have two possible polarizations holds for Myem:2Ny.,.

5.6 Non-linear wave equations
TheVan der Polequation is given by:

A2z
e €w0(1 - 5332)

dx

at ergz:()

Bx? can be ignored for very small values of the amplitude. Substitution of ™! gives: w = Fwy(ic &
24/1— %sQ). The lowest-order instabilities grow %swo. While x is growing, the 2nd term becomes larger

and diminishes the growth. Oscillations on a time seale;o‘1 can exist. Ifz is expanded as = 2(*) +
exM 4+ 22(2) 4 ... and this is substituted one obtains, besides perisdic,lar termsv t. If it is assumed
that there exist timescaleg, 0 < 7 < N with d7,,/0t = £™ and if the secular terms are put 0 one obtains:

d (1 /de\> | 5, NT2%
dt{2(dt> +§w0a: —€w0(1—ﬂl‘)(dt>

This is an energy equation. Energy is conserved if the left-hand side is2. ¥ 1/, the right-hand side
changes sign and an increase in energy changes into a decrease of energy. This mechanism limits the growth
of oscillations.

The Korteweg-De Vriegquation is given by:

@ =+ @ _ % + bQ@ =0
ot  Ox auax dr3
——— ——

non—lin  dispersive

This equation is for example a model for ion-acoustic waves in a plasma. For this equation, soliton solutions
of the following form exist:
—d

ule =) = cosh?(e(x — ct))

with ¢ = 1 + 1ad ande? = ad/(12b%).




The V operator 99

The V-operator

In cartesian coordinatés;, y, z) holds:

ﬁza%éﬁa%e*ﬁiéz , gradf = vf,%;Jr%?ﬁ?gz
div&zﬁﬁz%‘?Jr%Jra;; , v2f787f 7f 82120
omnne () () (-5
In cylinder coordinate$r, ¢, z) holds:
6:687“ rJrlaa(p Jrgzez , gradf*ﬁ_’v”*lgiiergf_'

rot @ = (laaz — (%“0)

n da, 3az oy 6(1@ n ap laa,, .
r Op 0z 0z ar )¢ or r o r Oy “
In spherical coordinates:, 4, ¢) holds:

v = 9g410,, L 9,
T oo " o0 rsinf dp ©

afﬂ lafﬂ 1 of,

df = é, -
gradf = Frert L Ep%t ang 9, e

. Oa, 2a, 16&9 ag 1 Oa
diva = —£

va or + r r 00 + rtanf + rsinf Jp

10a ag 1 Oay 1 Oa da a

- 1 Uly . vae _»T r Yy Ge)

rova (r 00 +rtan0 rsind 8g0>e +<rsin9 Op or r>69+

ag , ag 100,
or r r 00
0% f 28f 182f 1 of 1 0% f

Vif = —= —Z 7 g L - 97
oz rdr | r2002 " r2tanf 00  12sin26 Op?

General orthonormal curvelinear coordinatesv, w) can be obtained from cartesian coordinates by the trans-
formationZ = Z(u, v, w). The unit vectors are then given by:

oo loF L 1oF . 10F
u_hlau’ v_hQaU, w_hg(?w

where the factorg,; set the norm to 1. Then holds:

1 8fq 10f 1 of

gadf = o™ T R 0™ hjaw@w
- 1 0
diva = il <8u(h2h3a“) ( shiay) + (h h2aw)>
. 1 5‘(h3aw hQCLU (hlau) 8(h3aw) 5
t = - - v
rota h2h3 < ov ) hghl ( ow ou €t
1 8(}12&@ _ hlau
h1h2 ou

o 1 [8 (hahs af hshy Of hihs Of
v f o hlhghg [8u hl ou T 8v hQ ov *ow aw hg ow




100 The SI units
The Sl units
Basic units Derived units with special names
[ Quantity | Unit Sym. | [ Quantity | Unit Sym. Derivation ||
Length metre m Frequency hertz Hz st
Mass kilogram kg Force newton N kg -m-s~2
Time second S Pressure pascal Pa N-m™?
Therm. temp. kelvin K Energy joule J N-m
Electr. current ampere A Power watt wW J.s !
Luminous intens, candela cd Charge coulomb C A-s
Amount of subst.| mol mol El. Potential volt \V; W-A-1
_ El. Capacitance | farad F c-v-!
Extra units El. Resistance | ohm Q V-A-L
Plane angle radian rad El. Conductance | siemens S A.v—i
solid angle sterradian  sr Mag. flux weber Wb Vs
Mag. flux density| tesla T Wb -m™2
Inductance henry H Wb- AL
Luminous flux lumen Im cd - sr
llluminance lux Ix Im - m—2
Activity bequerel Bg s7!
Absorbed dose | gray Gy J-kg!
Dose equivalent | sievert Sv J - kg™!
Prefixes
yotta Y 10* |[giga G 10° |deci d 107! | pico p 107!2
zetta Z 10! |{mega M 10° |centi ¢ 1072 | femto f 1071°
exa E 10 | kilo k 10 [mili m 1073 | atto a 10718
peta P 10' | hecto h 10? | micro p 1076 | zepto z 10~2!
tera T 102 |deca da 10 |nano n 107Y | yocto y 10~
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