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Physical Constants

Name Symbol Value Unit
Numberπ π 3.14159265358979323846
Number e e 2.71828182845904523536

Euler’s constant γ = lim
n→∞

(
n∑

k=1

1/k − ln(n)
)

= 0.5772156649

Elementary charge e 1.60217733 · 10−19 C
Gravitational constant G, κ 6.67259 · 10−11 m3kg−1s−2

Fine-structure constant α = e2/2hcε0 ≈ 1/137
Speed of light in vacuum c 2.99792458 · 108 m/s (def)
Permittivity of the vacuum ε0 8.854187 · 10−12 F/m
Permeability of the vacuum µ0 4π · 10−7 H/m
(4πε0)−1 8.9876 · 109 Nm2C−2

Planck’s constant h 6.6260755 · 10−34 Js
Dirac’s constant h̄ = h/2π 1.0545727 · 10−34 Js
Bohr magneton µB = eh̄/2me 9.2741 · 10−24 Am2

Bohr radius a0 0.52918 Å
Rydberg’s constant Ry 13.595 eV
Electron Compton wavelengthλCe = h/mec 2.2463 · 10−12 m
Proton Compton wavelength λCp = h/mpc 1.3214 · 10−15 m
Reduced mass of the H-atom µH 9.1045755 · 10−31 kg

Stefan-Boltzmann’s constant σ 5.67032 · 10−8 Wm−2K−4

Wien’s constant kW 2.8978 · 10−3 mK
Molar gasconstant R 8.31441 J·mol−1·K−1

Avogadro’s constant NA 6.0221367 · 1023 mol−1

Boltzmann’s constant k = R/NA 1.380658 · 10−23 J/K

Electron mass me 9.1093897 · 10−31 kg
Proton mass mp 1.6726231 · 10−27 kg
Neutron mass mn 1.674954 · 10−27 kg
Elementary mass unit mu = 1

12m(126 C) 1.6605656 · 10−27 kg
Nuclear magneton µN 5.0508 · 10−27 J/T

Diameter of the Sun D� 1392 · 106 m
Mass of the Sun M� 1.989 · 1030 kg
Rotational period of the Sun T� 25.38 days
Radius of Earth RA 6.378 · 106 m
Mass of Earth MA 5.976 · 1024 kg
Rotational period of Earth TA 23.96 hours
Earth orbital period Tropical year 365.24219879 days
Astronomical unit AU 1.4959787066 · 1011 m
Light year lj 9.4605 · 1015 m
Parsec pc 3.0857 · 1016 m
Hubble constant H ≈ (75± 25) km·s−1·Mpc−1
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Chapter 1

Mechanics

1.1 Point-kinetics in a fixed coordinate system

1.1.1 Definitions

The position~r, the velocity~v and the acceleration~a are defined by:~r = (x, y, z), ~v = (ẋ, ẏ, ż), ~a = (ẍ, ÿ, z̈).
The following holds:

s(t) = s0 +
∫
|~v(t)|dt ; ~r(t) = ~r0 +

∫
~v(t)dt ; ~v(t) = ~v0 +

∫
~a(t)dt

When the acceleration is constant this gives:v(t) = v0 + at ands(t) = s0 + v0t+ 1
2at

2.
For the unit vectors in a direction⊥ to the orbit~et and parallel to it~en holds:

~et =
~v

|~v|
=
d~r

ds
~̇et =

v

ρ
~en ; ~en =

~̇et

|~̇et|

For thecurvaturek and theradius of curvatureρ holds:

~k =
d~et
ds

=
d2~r

ds2
=
∣∣∣∣dϕds

∣∣∣∣ ; ρ =
1
|k|

1.1.2 Polar coordinates

Polar coordinates are defined by:x = r cos(θ), y = r sin(θ). So, for the unit coordinate vectors holds:
~̇er = θ̇~eθ, ~̇eθ = −θ̇~er

The velocity and the acceleration are derived from:~r = r~er, ~v = ṙ~er +rθ̇~eθ,~a = (r̈−rθ̇2)~er +(2ṙθ̇+rθ̈)~eθ.

1.2 Relative motion

For the motion of a point D w.r.t. a point Q holds:~rD = ~rQ +
~ω × ~vQ
ω2

with ~QD = ~rD − ~rQ andω = θ̇.

Further holds:α = θ̈. ′ means that the quantity is defined in a moving system of coordinates. In a moving
system holds:
~v = ~vQ + ~v ′ + ~ω × ~r ′ and~a = ~aQ + ~a ′ + ~α× ~r ′ + 2~ω × ~v ′ + ~ω × (~ω × ~r ′)
with ~ω × (~ω × ~r ′) = −ω2~r ′n

1.3 Point-dynamics in a fixed coordinate system

1.3.1 Force, (angular)momentum and energy

Newton’s 2nd law connects the force on an object and the resulting acceleration of the object where themo-
mentumis given by~p = m~v:

~F (~r,~v, t) =
d~p

dt
=
d(m~v )
dt

= m
d~v

dt
+ ~v

dm

dt

m=const= m~a
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Chapter 1: Mechanics 3

Newton’s 3rd law is given by:~Faction = −~Freaction.

For the powerP holds:P = Ẇ = ~F ·~v. For the total energyW , the kinetic energyT and the potential energy
U holds:W = T + U ; Ṫ = −U̇ with T = 1

2mv
2.

Thekick ~S is given by:~S = ∆~p =
∫

~Fdt

The workA, delivered by a force, isA =

2∫
1

~F · d~s =

2∫
1

F cos(α)ds

The torque~τ is related to the angular momentum~L: ~τ = ~̇L = ~r × ~F ; and
~L = ~r × ~p = m~v × ~r, |~L| = mr2ω. The following equation is valid:

τ = −∂U
∂θ

Hence, the conditions for a mechanical equilibrium are:
∑ ~Fi = 0 and

∑
~τi = 0.

The force of frictionis usually proportional to the force perpendicular to the surface, except when the motion
starts, when a threshold has to be overcome:Ffric = f · Fnorm · ~et.

1.3.2 Conservative force fields

A conservative force can be written as the gradient of a potential:~Fcons = −~∇U . From this follows that
∇× ~F = ~0. For such a force field also holds:∮

~F · d~s = 0 ⇒ U = U0 −
r1∫

r0

~F · d~s

So the work delivered by a conservative force field depends not on the trajectory covered but only on the
starting and ending points of the motion.

1.3.3 Gravitation

The Newtonian law of gravitation is (in GRT one also usesκ instead ofG):

~Fg = −Gm1m2

r2
~er

The gravitational potential is then given byV = −Gm/r. From Gauss law it then follows:∇2V = 4πG%.

1.3.4 Orbital equations

If V = V (r) one can derive from the equations of Lagrange forφ the conservation of angular momentum:

∂L
∂φ

=
∂V

∂φ
= 0⇒ d

dt
(mr2φ) = 0⇒ Lz = mr2φ = constant

For the radial position as a function of time can be found that:(
dr

dt

)2

=
2(W − V )

m
− L2

m2r2

The angular equation is then:

φ− φ0 =

r∫
0

[
mr2

L

√
2(W − V )

m
− L2

m2r2

]−1

dr
r−2field= arccos

(
1 +

1
r −

1
r0

1
r0

+ km/L2
z

)

If F = F (r): L =constant, ifF is conservative:W =constant, if~F ⊥ ~v then∆T = 0 andU = 0.
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Kepler’s orbital equations

In a force fieldF = kr−2, the orbits are conic sections with the origin of the force in one of the foci (Kepler’s
1st law). The equation of the orbit is:

r(θ) =
`

1 + ε cos(θ − θ0)
, or: x2 + y2 = (`− εx)2

with

` =
L2

Gµ2Mtot
; ε2 = 1 +

2WL2

G2µ3M2
tot

= 1− `

a
; a =

`

1− ε2
=

k

2W
a is half the length of the long axis of the elliptical orbit in case the orbit is closed. Half the length of the short
axis isb =

√
a`. ε is theexcentricityof the orbit. Orbits with an equalε are of equal shape. Now, 5 types of

orbits are possible:

1. k < 0 andε = 0: a circle.

2. k < 0 and0 < ε < 1: an ellipse.

3. k < 0 andε = 1: a parabole.

4. k < 0 andε > 1: a hyperbole, curved towards the centre of force.

5. k > 0 andε > 1: a hyperbole, curved away from the centre of force.

Other combinations are not possible: the total energy in a repulsive force field is always positive soε > 1.

If the surface between the orbit covered betweent1 andt2 and the focus C around which the planet moves is
A(t1, t2), Kepler’s 2nd law is

A(t1, t2) =
LC

2m
(t2 − t1)

Kepler’s 3rd law is, withT the period andMtot the total mass of the system:

T 2

a3
=

4π2

GMtot

1.3.5 The virial theorem

The virial theorem for one particle is:

〈m~v · ~r〉 = 0⇒ 〈T 〉 = − 1
2

〈
~F · ~r

〉
= 1

2

〈
r
dU

dr

〉
= 1

2n 〈U〉 if U = − k

rn

The virial theorem for a collection of particles is:

〈T 〉 = − 1
2

〈 ∑
particles

~Fi · ~ri +
∑
pairs

~Fij · ~rij

〉
These propositions can also be written as:2Ekin + Epot = 0.

1.4 Point dynamics in a moving coordinate system

1.4.1 Apparent forces

The total force in a moving coordinate system can be found by subtracting the apparent forces from the forces
working in the reference frame:~F ′ = ~F − ~Fapp. The different apparent forces are given by:

1. Transformation of the origin:For = −m~aa

2. Rotation:~Fα = −m~α× ~r ′

3. Coriolis force:Fcor = −2m~ω × ~v

4. Centrifugal force:~Fcf = mω2~rn
′ = −~Fcp ; ~Fcp = −mv

2

r
~er
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1.4.2 Tensor notation

Transformation of the Newtonian equations of motion toxα = xα(x) gives:

dxα

dt
=
∂xα

∂x̄β

dx̄β

dt
;

The chain rule gives:

d

dt

dxα

dt
=
d2xα

dt2
=

d

dt

(
∂xα

∂x̄β

dx̄β

dt

)
=
∂xα

∂x̄β

d2x̄β

dt2
+
dx̄β

dt

d

dt

(
∂xα

∂x̄β

)
so:

d

dt

∂xα

∂x̄β
=

∂

∂x̄γ

∂xα

∂x̄β

dx̄γ

dt
=

∂2xα

∂x̄β∂x̄γ

dx̄γ

dt

This leads to:
d2xα

dt2
=
∂xα

∂x̄β

d2x̄β

dt2
+

∂2xα

∂x̄β∂x̄γ

dx̄γ

dt

(
dx̄β

dt

)
Hence the Newtonian equation of motion

m
d2xα

dt2
= Fα

will be transformed into:

m

{
d2xα

dt2
+ Γα

βγ

dxβ

dt

dxγ

dt

}
= Fα

The apparent forces are taken from he origin to the effect side in the wayΓα
βγ

dxβ

dt

dxγ

dt
.

1.5 Dynamics of masspoint collections

1.5.1 The centre of mass

The velocity w.r.t. the centre of mass~R is given by~v− ~̇R. The coordinates of the centre of mass are given by:

~rm =
∑
mi~ri∑
mi

In a 2-particle system, the coordinates of the centre of mass are given by:

~R =
m1~r1 +m2~r2
m1 +m2

With ~r = ~r1 − ~r2, the kinetic energy becomes:T = 1
2MtotṘ

2 + 1
2µṙ

2, with the reduced massµ given by:
1
µ

=
1
m1

+
1
m2

The motion within and outside the centre of mass can be separated:

~̇Loutside = ~τoutside ; ~̇Linside = ~τinside

~p = m~vm ; ~Fext = m~am ; ~F12 = µ~u

1.5.2 Collisions

With collisions, where B are the coordinates of the collision and C an arbitrary other position, holds:~p = m~vm
is constant, andT = 1

2m~v
2
m is constant. The changes in therelative velocitiescan be derived from:~S = ∆~p =

µ(~vaft − ~vbefore). Further holds∆~LC = ~CB× ~S, ~p ‖ ~S =constant and~L w.r.t. B is constant.
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1.6 Dynamics of rigid bodies

1.6.1 Moment of Inertia

The angular momentum in a moving coordinate system is given by:

~L′ = I~ω + ~L′n

whereI is themoment of inertiawith respect to a central axis, which is given by:

I =
∑

i

mi~ri
2 ; T ′ = Wrot = 1

2ωIij~ei~ej = 1
2Iω

2

or, in the continuous case:

I =
m

V

∫
r′

2
ndV =

∫
r′

2
ndm

Further holds:
Li = Iijωj ; Iii = Ii ; Iij = Iji = −

∑
k

mkx
′
ix
′
j

Steiner’s theorem is:Iw.r.t.D = Iw.r.t.C +m(DM)2 if axis C‖ axis D.

Object I Object I

Cavern cylinder I = mR2 Massive cylinder I = 1
2mR

2

Disc, axis in plane disc through m I = 1
4mR

2 Halter I = 1
2µR

2

Cavern sphere I = 2
3mR

2 Massive sphere I = 2
5mR

2

Bar, axis⊥ through c.o.m. I = 1
12ml

2 Bar, axis⊥ through end I = 1
3ml

2

Rectangle, axis⊥ plane thr. c.o.m. I = 1
12m(a2 + b2) Rectangle, axis‖ b thr. m I = ma2

1.6.2 Principal axes

Each rigid body has (at least) 3 principal axes which stand⊥ to each other. For a principal axis holds:

∂I

∂ωx
=

∂I

∂ωy
=

∂I

∂ωz
= 0 so L′n = 0

The following holds:ω̇k = −aijkωiωj with aijk =
Ii − Ij
Ik

if I1 ≤ I2 ≤ I3.

1.6.3 Time dependence

For torque of force~τ holds:

~τ ′ = Iθ̈ ;
d′′~L′

dt
= ~τ ′ − ~ω × ~L′

Thetorque~T is defined by:~T = ~F × ~d.

1.7 Variational Calculus, Hamilton and Lagrange mechanics

1.7.1 Variational Calculus

Starting with:

δ

b∫
a

L(q, q̇, t)dt = 0 with δ(a) = δ(b) = 0 and δ

(
du

dx

)
=

d

dx
(δu)
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the equations of Lagrange can be derived:
d

dt

∂L
∂q̇i

=
∂L
∂qi

When there are additional conditions applying to the variational problemδJ(u) = 0 of the type
K(u) =constant, the new problem becomes:δJ(u)− λδK(u) = 0.

1.7.2 Hamilton mechanics

TheLagrangianis given by:L =
∑
T (q̇i) − V (qi). TheHamiltonian is given by:H =

∑
q̇ipi − L. In 2

dimensions holds:L = T − U = 1
2m(ṙ2 + r2φ̇2)− U(r, φ).

If the used coordinates arecanonicalthe Hamilton equations are the equations of motion for the system:

dqi
dt

=
∂H

∂pi
;

dpi

dt
= −∂H

∂qi

Coordinates are canonical if the following holds:{qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij where{, } is the
Poisson bracket:

{A,B} =
∑

i

[
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

]
The Hamiltonian of a Harmonic oscillator is given byH(x, p) = p2/2m + 1

2mω
2x2. With new coordinates

(θ, I), obtained by the canonical transformationx =
√

2I/mω cos(θ) andp = −
√

2Imω sin(θ), with inverse
θ = arctan(−p/mωx) andI = p2/2mω + 1

2mωx
2 it follows: H(θ, I) = ωI.

The Hamiltonian of a charged particle with chargeq in an external electromagnetic field is given by:

H =
1

2m

(
~p− q ~A

)2

+ qV

This Hamiltonian can be derived from the Hamiltonian of a free particleH = p2/2m with the transformations
~p → ~p − q ~A andH → H − qV . This is elegant from a relativistic point of view: this is equivalent to the
transformation of the momentum 4-vectorpα → pα − qAα. A gauge transformation on the potentialsAα

corresponds with a canonical transformation, which make the Hamilton equations the equations of motion for
the system.

1.7.3 Motion around an equilibrium, linearization

For natural systems around equilibrium the following equations are valid:(
∂V

∂qi

)
0

= 0 ; V (q) = V (0) + Vikqiqk with Vik =
(

∂2V

∂qi∂qk

)
0

With T = 1
2 (Mik q̇iq̇k) one receives the set of equationsMq̈ + V q = 0. If qi(t) = ai exp(iωt) is substituted,

this set of equations has solutions ifdet(V − ω2M) = 0. This leads to the eigenfrequencies of the problem:

ω2
k =

aT
k V ak

aT
kMak

. If the equilibrium is stable holds:∀k thatω2
k > 0. The general solution is a superposition if

eigenvibrations.

1.7.4 Phase space, Liouville’s equation

In phase space holds:

∇ =

(∑
i

∂

∂qi
,
∑

i

∂

∂pi

)
so ∇ · ~v =

∑
i

(
∂

∂qi

∂H

∂pi
− ∂

∂pi

∂H

∂qi

)
If the equation of continuity,∂t%+∇ · (%~v ) = 0 holds, this can be written as:

{%,H}+
∂%

∂t
= 0
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For an arbitrary quantityA holds:
dA

dt
= {A,H}+

∂A

∂t

Liouville’s theorem can than be written as:

d%

dt
= 0 ; or:

∫
pdq = constant

1.7.5 Generating functions

Starting with the coordinate transformation:{
Qi = Qi(qi, pi, t)
Pi = Pi(qi, pi, t)

one can derive the following Hamilton equations with the new HamiltonianK:

dQi

dt
=
∂K

∂Pi
;

dPi

dt
= − ∂K

∂Qi

Now, a distinction between 4 cases can be made:

1. If piq̇i −H = PiQi −K(Pi, Qi, t)−
dF1(qi, Qi, t)

dt
, the coordinates follow from:

pi =
∂F1

∂qi
; Pi = −∂F1

∂Qi
; K = H +

∂F1

∂t

2. If piq̇i −H = −ṖiQi −K(Pi, Qi, t) +
dF2(qi, Pi, t)

dt
, the coordinates follow from:

pi =
∂F2

∂qi
; Qi =

∂F2

∂Pi
; K = H +

∂F2

∂t

3. If −ṗiqi −H = PiQ̇i −K(Pi, Qi, t) +
dF3(pi, Qi, t)

dt
, the coordinates follow from:

qi = −∂F3

∂pi
; Pi = −∂F3

∂Qi
; K = H +

∂F3

∂t

4. If −ṗiqi −H = −PiQi −K(Pi, Qi, t) +
dF4(pi, Pi, t)

dt
, the coordinates follow from:

qi = −∂F4

∂pi
; Qi =

∂F4

∂pi
; K = H +

∂F4

∂t

The functionsF1, F2, F3 andF4 are calledgenerating functions.



Chapter 3

Relativity

3.1 Special relativity

3.1.1 The Lorentz transformation

The Lorentz transformation(~x ′, t′) = (~x ′(~x, t), t′(~x, t)) leaves the wave equation invariant ifc is invariant:

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1
c2
∂2

∂t2
=

∂2

∂x′2
+

∂2

∂y′2
+

∂2

∂z′2
− 1
c2

∂2

∂t′2

This transformation can also be found whends2 = ds′2 is demanded. The general form of the Lorentz
transformation is given by:

~x ′ = ~x+
(γ − 1)(~x · ~v )~v

|v|2
− γ~vt , t′ = γ

(
t− ~x · ~v

c2

)
where

γ =
1√

1− v2

c2

The velocity difference~v ′ between two observers transforms according to:

~v ′ =
(
γ

(
1− ~v1 · ~v2

c2

))−1(
~v2 + (γ − 1)

~v1 · ~v2
v2
1

~v1 − γ~v1
)

If the velocity is parallel to thex-axis, this becomesy′ = y, z′ = z and:

x′ = γ(x− vt) , x = γ(x′ + vt′)

t′ = γ
(
t− xv

c2

)
, t = γ

(
t′ +

x′v

c2

)
, v′ =

v2 − v1
1− v1v2

c2

If ~v = v~ex holds:

p′x = γ

(
px −

βW

c

)
, W ′ = γ(W − vpx)

With β = v/c the electric field of a moving charge is given by:

~E =
Q

4πε0r2
(1− β2)~er

(1− β2 sin2(θ))3/2

The electromagnetic field transforms according to:

~E′ = γ( ~E + ~v × ~B ) , ~B′ = γ

(
~B − ~v × ~E

c2

)

Length, mass and time transform according to:∆tr = γ∆t0, mr = γm0, lr = l0/γ, with 0 the quantities
in a co-moving reference frame andr the quantities in a frame moving with velocityv w.r.t. it. The proper
time τ is defined as:dτ2 = ds2/c2, so∆τ = ∆t/γ. For energy and momentum holds:W = mrc

2 = γW0,

13
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W 2 = m2
0c

4 + p2c2. p = mrv = γm0v = Wv/c2, andpc = Wβ whereβ = v/c. The force is definedby
~F = d~p/dt.

4-vectors have the property that their modulus is independent of the observer: their componentscanchange
after a coordinate transformation but not their modulus. The difference of two 4-vectors transforms also as

a 4-vector. The 4-vector for the velocity is given byUα =
dxα

dτ
. The relation with the “common” velocity

ui := dxi/dt is: Uα = (γui, icγ). For particles with nonzero restmass holds:UαUα = −c2, for particles
with zero restmass (so withv = c) holds:UαUα = 0. The 4-vector for energy and momentum is given by:
pα = m0U

α = (γpi, iW/c). So:pαp
α = −m2

0c
2 = p2 −W 2/c2.

3.1.2 Red and blue shift

There are three causes of red and blue shifts:

1. Motion: with~ev · ~er = cos(ϕ) follows:
f ′

f
= γ

(
1− v cos(ϕ)

c

)
.

This can give both red- and blueshift, also⊥ to the direction of motion.

2. Gravitational redshift:
∆f
f

=
κM

rc2
.

3. Redshift because the universe expands, resulting in e.g. the cosmic background radiation:
λ0

λ1
=
R0

R1
.

3.1.3 The stress-energy tensor and the field tensor

The stress-energy tensor is given by:

Tµν = (%c2 + p)uµuν + pgµν +
1
c2
(
FµαF

α
ν + 1

4gµνF
αβFαβ

)
The conservation laws can than be written as:∇νT

µν = 0. The electromagnetic field tensor is given by:

Fαβ =
∂Aβ

∂xα
− ∂Aα

∂xβ

with Aµ := ( ~A, iV/c) andJµ := ( ~J, icρ). The Maxwell equations can than be written as:

∂νF
µν = µ0J

µ , ∂λFµν + ∂µFνλ + ∂νFλµ = 0

The equations of motion for a charged particle in an EM field become with the field tensor:

dpα

dτ
= qFαβu

β

3.2 General relativity

3.2.1 Riemannian geometry, the Einstein tensor

The basic principles of general relativity are:

1. The geodesic postulate: free falling particles move along geodesics of space-time with the proper time
τ or arc lengths as parameter. For particles with zero rest mass (photons), the use of a free parameter is
required because for them holdsds = 0. Fromδ

∫
ds = 0 the equations of motion can be derived:

d2xα

ds2
+ Γα

βγ

dxβ

ds

dxγ

ds
= 0
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2. Theprinciple of equivalence: inertial mass≡ gravitational mass⇒ gravitation is equivalent with a
curved space-time were particles move along geodesics.

3. By a proper choice of the coordinate system it is possible to make the metric locally flat in each point
xi: gαβ(xi) = ηαβ :=diag(−1, 1, 1, 1).

TheRiemann tensoris defined as:Rµ
ναβT

ν := ∇α∇βT
µ−∇β∇αT

µ, where the covariant derivative is given
by∇ja

i = ∂ja
i + Γi

jka
k and∇jai = ∂jai − Γk

ijak. Here,

Γi
jk =

gil

2

(
∂glj

∂xk
+
∂glk

∂xj
−
∂g

jk

∂xl

)
, for Euclidean spaces this reduces to:Γi

jk =
∂2x̄l

∂xj∂xk

∂xi

∂x̄l
,

are theChristoffel symbols. For a second-order tensor holds:[∇α,∇β ]Tµ
ν = Rµ

σαβT
σ
ν + Rσ

ναβT
µ
σ , ∇ka

i
j =

∂ka
i
j−Γl

kja
i
l +Γi

kla
l
j ,∇kaij = ∂kaij−Γl

kialj−Γl
kjajl and∇ka

ij = ∂ka
ij +Γi

kla
lj +Γj

kla
il. The following

holds:Rα
βµν = ∂µΓα

βν − ∂νΓα
βµ + Γα

σµΓσ
βν − Γα

σνΓσ
βµ.

TheRicci tensoris a contraction of the Riemann tensor:Rαβ := Rµ
αµβ , which is symmetric:Rαβ = Rβα.

TheBianchi identitiesare:∇λRαβµν +∇νRαβλµ +∇µRαβνλ = 0.

The Einstein tensoris given by: Gαβ := Rαβ − 1
2g

αβR, whereR := Rα
α is theRicci scalar, for which

holds: ∇βGαβ = 0. With the variational principleδ
∫

(L(gµν) − Rc2/16πκ)
√
|g|d4x = 0 for variations

gµν → gµν + δgµν theEinstein field equationscan be derived:

Gαβ =
8πκ
c2

Tαβ , which can also be written asRαβ =
8πκ
c2

(Tαβ − 1
2gαβT

µ
µ )

For empty space this is equivalent toRαβ = 0. The equationRαβµν = 0 has as only solution a flat space.

The Einstein equations are 10 independent equations, which are of second order ingµν . From this, the Laplace
equation from Newtonian gravitation can be derived by stating:gµν = ηµν + hµν , where|h| � 1. In the
stationary case, this results in∇2h00 = 8πκ%/c2.

The most general form of the field equations is:Rαβ − 1
2gαβR+ Λgαβ =

8πκ
c2

Tαβ

whereΛ is thecosmological constant. This constant plays a role in inflatory models of the universe.

3.2.2 The line element

Themetric tensorin an Euclidean space is given by:gij =
∑

k

∂x̄k

∂xi

∂x̄k

∂xj
.

In general holds:ds2 = gµνdx
µdxν . In special relativity this becomesds2 = −c2dt2 + dx2 + dy2 + dz2.

This metric,ηµν :=diag(−1, 1, 1, 1), is called theMinkowski metric.

Theexternal Schwarzschild metricapplies in vacuum outside a spherical mass distribution, and is given by:

ds2 =
(
−1 +

2m
r

)
c2dt2 +

(
1− 2m

r

)−1

dr2 + r2dΩ2

Here,m := Mκ/c2 is thegeometrical massof an object with massM , anddΩ2 = dθ2 + sin2 θdϕ2. This
metric is singular forr = 2m = 2κM/c2. If an object is smaller than its event horizon2m, that implies that
its escape velocity is> c, it is called ablack hole. The Newtonian limit of this metric is given by:

ds2 = −(1 + 2V )c2dt2 + (1− 2V )(dx2 + dy2 + dz2)

whereV = −κM/r is the Newtonian gravitation potential. In general relativity, the components ofgµν are
associated with the potentials and the derivatives ofgµν with the field strength.

The Kruskal-Szekeres coordinates are used to solve certain problems with the Schwarzschild metric near
r = 2m. They are defined by:
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• r > 2m: 
u =

√
r

2m
− 1 exp

( r

4m

)
cosh

(
t

4m

)

v =
√

r

2m
− 1 exp

( r

4m

)
sinh

(
t

4m

)
• r < 2m: 

u =
√

1− r

2m
exp

( r

4m

)
sinh

(
t

4m

)

v =
√

1− r

2m
exp

( r

4m

)
cosh

(
t

4m

)
• r = 2m: here, the Kruskal coordinates are singular, which is necessary to eliminate the coordinate

singularity there.

The line element in these coordinates is given by:

ds2 = −32m3

r
e−r/2m(dv2 − du2) + r2dΩ2

The liner = 2m corresponds tou = v = 0, the limit x0 →∞ with u = v andx0 → −∞ with u = −v. The
Kruskal coordinates are only singular on the hyperbolev2 − u2 = 1, this corresponds withr = 0. On the line
dv = ±du holdsdθ = dϕ = ds = 0.

For the metric outside a rotating, charged spherical mass the Newman metric applies:

ds2 =
(

1− 2mr − e2

r2 + a2 cos2 θ

)
c2dt2 −

(
r2 + a2 cos2 θ

r2 − 2mr + a2 − e2

)
dr2 − (r2 + a2 cos2 θ)dθ2 −(

r2 + a2 +
(2mr − e2)a2 sin2 θ

r2 + a2 cos2 θ

)
sin2 θdϕ2 +

(
2a(2mr − e2)
r2 + a2 cos2 θ

)
sin2 θ(dϕ)(cdt)

wherem = κM/c2, a = L/Mc ande = κQ/ε0c
2.

A rotating charged black hole has an event horizon withRS = m+
√
m2 − a2 − e2.

Near rotating black holes frame dragging occurs becausegtϕ 6= 0. For the Kerr metric (e = 0, a 6= 0) then
follows that within the surfaceRE = m+

√
m2 − a2 cos2 θ (de ergosphere) no particle can be at rest.

3.2.3 Planetary orbits and the perihelion shift

To find a planetary orbit, the variational problemδ
∫
ds = 0 has to be solved. This is equivalent to the problem

δ
∫
ds2 = δ

∫
gijdx

idxj = 0. Substituting the external Schwarzschild metric yields for a planetary orbit:

du

dϕ

(
d2u

dϕ2
+ u

)
=
du

dϕ

(
3mu+

m

h2

)
whereu := 1/r andh = r2ϕ̇ =constant. The term3mu is not present in the classical solution. This term can

in the classical case also be found from a potentialV (r) = −κM
r

(
1 +

h2

r2

)
.

The orbital equation givesr =constant as solution, or can, after dividing bydu/dϕ, be solved with perturbation
theory. In zeroth order, this results in an elliptical orbit:u0(ϕ) = A + B cos(ϕ) with A = m/h2 andB an
arbitrary constant. In first order, this becomes:

u1(ϕ) = A+B cos(ϕ− εϕ) + ε

(
A+

B2

2A
− B2

6A
cos(2ϕ)

)
whereε = 3m2/h2 is small. The perihelion of a planet is the point for whichr is minimal, oru maximal.
This is the case ifcos(ϕ− εϕ) = 0 ⇒ ϕ ≈ 2πn(1 + ε). For the perihelion shift then follows:∆ϕ = 2πε =
6πm2/h2 per orbit.
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3.2.4 The trajectory of a photon

For the trajectory of a photon (and for each particle with zero restmass) holdsds2 = 0. Substituting the
external Schwarzschild metric results in the following orbital equation:

du

dϕ

(
d2u

dϕ2
+ u− 3mu

)
= 0

3.2.5 Gravitational waves

Starting with the approximationgµν = ηµν + hµν for weak gravitational fields and the definitionh′µν =
hµν − 1

2ηµνh
α
α it follows that h′µν = 0 if the gauge condition∂h′µν/∂x

ν = 0 is satisfied. From this, it
follows that the loss of energy of a mechanical system, if the occurring velocities are� c and for wavelengths
� the size of the system, is given by:

dE

dt
= − G

5c5
∑
i,j

(
d3Qij

dt3

)2

with Qij =
∫
%(xixj − 1

3δijr
2)d3x the mass quadrupole moment.

3.2.6 Cosmology

If for the universe as a whole is assumed:

1. There exists a global time coordinate which acts asx0 of a Gaussian coordinate system,

2. The 3-dimensional spaces are isotrope for a certain value ofx0,

3. Each point is equivalent to each other point for a fixedx0.

then theRobertson-Walker metriccan be derived for the line element:

ds2 = −c2dt2 +
R2(t)

r20

(
1− kr2

4r20

) (dr2 + r2dΩ2)

For thescalefactorR(t) the following equations can be derived:

2R̈
R

+
Ṙ2 + kc2

R2
= −8πκp

c2
+ Λ and

Ṙ2 + kc2

R2
=

8πκ%
3

+
Λ
3

wherep is the pressure and% the density of the universe. IfΛ = 0 can be derived for thedeceleration
parameterq:

q = − R̈R
Ṙ2

=
4πκ%
3H2

whereH = Ṙ/R is Hubble’s constant. This is a measure of the velocity with which galaxies far away are
moving away from each other, and has the value≈ (75±25) km·s−1·Mpc−1. This gives 3 possible conditions
for the universe (here,W is the total amount of energy in the universe):

1. Parabolical universe: k = 0, W = 0, q = 1
2 . The expansion velocity of the universe→ 0 if t → ∞.

The hereto relatedcritical densityis %c = 3H2/8πκ.

2. Hyperbolical universe: k = −1, W < 0, q < 1
2 . The expansion velocity of the universe remains

positive forever.

3. Elliptical universe: k = 1, W > 0, q > 1
2 . The expansion velocity of the universe becomes negative

after some time: the universe starts collapsing.
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Oscillations

4.1 Harmonic oscillations

The general form of a harmonic oscillation is:Ψ(t) = Ψ̂ei(ωt±ϕ) ≡ Ψ̂ cos(ωt± ϕ),

whereΨ̂ is theamplitude. A superposition of several harmonic oscillationswith the same frequencyresults in
another harmonic oscillation: ∑

i

Ψ̂i cos(αi ± ωt) = Φ̂ cos(β ± ωt)

with:

tan(β) =

∑
i

Ψ̂i sin(αi)∑
i

Ψ̂i cos(αi)
and Φ̂2 =

∑
i

Ψ̂2
i + 2

∑
j>i

∑
i

Ψ̂iΨ̂j cos(αi − αj)

For harmonic oscillations holds:
∫
x(t)dt =

x(t)
iω

and
dnx(t)
dtn

= (iω)nx(t).

4.2 Mechanic oscillations

For a construction with a spring with constantC parallel to a dampingk which is connected to a massM , to
which a periodic forceF (t) = F̂ cos(ωt) is applied holds the equation of motionmẍ = F (t) − kẋ − Cx.
With complex amplitudes, this becomes−mω2x = F − Cx− ikωx. With ω2

0 = C/m follows:

x =
F

m(ω2
0 − ω2) + ikω

,and for the velocity holds:̇x =
F

i
√
Cmδ + k

whereδ =
ω

ω0
− ω0

ω
. The quantityZ = F/ẋ is called theimpedanceof the system. Thequalityof the system

is given byQ =
√
Cm

k
.

The frequency with minimal|Z| is calledvelocity resonance frequency. This is equal toω0. In theresonance
curve|Z|/

√
Cm is plotted againstω/ω0. The width of this curve is characterized by the points where|Z(ω)| =

|Z(ω0)|
√

2. In these points holds:R = X andδ = ±Q−1, and the width is2∆ωB = ω0/Q.

Thestiffnessof an oscillating system is given byF/x. Theamplitude resonance frequencyωA is the frequency

whereiωZ is minimal. This is the case forωA = ω0

√
1− 1

2Q
2.

Thedamping frequencyωD is a measure for the time in which an oscillating system comes to rest. It is given

by ωD = ω0

√
1− 1

4Q2
. A weak damped oscillation(k2 < 4mC) dies out afterTD = 2π/ωD. For acritical

dampedoscillation(k2 = 4mC) holdsωD = 0. A strong damped oscillation(k2 > 4mC) drops like (if
k2 � 4mC) x(t) ≈ x0 exp(−t/τ).

4.3 Electric oscillations

The impedanceis given by: Z = R + iX. The phase angle isϕ := arctan(X/R). The impedance of a
resistor isR, of a capacitor1/iωC and of a self inductoriωL. The quality of a coil isQ = ωL/R. The total
impedance in case several elements are positioned is given by:

18
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1. Series connection:V = IZ,

Ztot =
∑

i

Zi , Ltot =
∑

i

Li ,
1
Ctot

=
∑

i

1
Ci

, Q =
Z0

R
, Z = R(1 + iQδ)

2. parallel connection:V = IZ,

1
Ztot

=
∑

i

1
Zi

,
1
Ltot

=
∑

i

1
Li

, Ctot =
∑

i

Ci , Q =
R

Z0
, Z =

R

1 + iQδ

Here,Z0 =

√
L

C
andω0 =

1√
LC

.

The power given by a source is given byP (t) = V (t) · I(t), so〈P 〉t = V̂eff Îeff cos(∆φ)
= 1

2 V̂ Î cos(φv − φi) = 1
2 Î

2Re(Z) = 1
2 V̂

2Re(1/Z), wherecos(∆φ) is the work factor.

4.4 Waves in long conductors

These cables are in use for signal transfer, e.g. coax cable. For them holds:Z0 =

√
dL

dx

dx

dC
.

The transmission velocity is given byv =

√
dx

dL

dx

dC
.

4.5 Coupled conductors and transformers

For two coils enclosing each others flux holds: ifΦ12 is the part of the flux originating fromI2 through coil 2
which is enclosed by coil 1, than holdsΦ12 = M12I2, Φ21 = M21I1. For the coefficients of mutual induction
Mij holds:

M12 = M21 := M = k
√
L1L2 =

N1Φ1

I2
=
N2Φ2

I1
∼ N1N2

where0 ≤ k ≤ 1 is thecoupling factor. For a transformer isk ≈ 1. At full load holds:

V1

V2
=
I2
I1

= − iωM

iωL2 +Rload
≈ −

√
L1

L2
= −N1

N2

4.6 Pendulums

The oscillation timeT = 1/f , and for different types of pendulums is given by:

• Oscillating spring:T = 2π
√
m/C if the spring force is given byF = C ·∆l.

• Physical pendulum:T = 2π
√
I/τ with τ the moment of force andI the moment of inertia.

• Torsion pendulum:T = 2π
√
I/κwith κ =

2lm
πr4∆ϕ

the constant of torsion andI the moment of inertia.

• Mathematical pendulum:T = 2π
√
l/g with g the acceleration of gravity andl the length of the pendu-

lum.
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Waves

5.1 The wave equation

The general form of the wave equation is:u = 0, or:

∇2u− 1
v2

∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− 1
v2

∂2u

∂t2
= 0

whereu is the disturbance andv the propagation velocity. In general holds:v = fλ. By definition holds:
kλ = 2π andω = 2πf .

In principle, there are two types of waves:

1. Longitudinal waves: for these holds~k ‖ ~v ‖ ~u.

2. Transversal waves: for these holds~k ‖ ~v ⊥ ~u.

Thephase velocityis given byvph = ω/k. Thegroup velocityis given by:

vg =
dω

dk
= vph + k

dvph

dk
= vph

(
1− k

n

dn

dk

)
wheren is the refractive index of the medium. Ifvph does not depend onω holds:vph = vg. In a dispersive
medium it is possible thatvg > vph or vg < vph, andvg · vf = c2. If one wants to transfer information with
a wave, e.g. by modulation of an EM wave, the information travels with the velocity at with a change in the
electromagnetic field propagates. This velocity is often almost equal to the group velocity.

For some media, the propagation velocity follows from:

• Pressure waves in a liquid or gas:v =
√
κ/%, whereκ is the modulus of compression.

• For pressure waves in a gas also holds:v =
√
γp/% =

√
γRT/M .

• Pressure waves in a thin solid bar with diameter<< λ: v =
√
E/%

• waves in a string:v =
√
Fspanl/m

• Surface waves on a liquid:v =

√(
gλ

2π
+

2πγ
%λ

)
tanh

(
2πh
λ

)
whereh is the depth of the liquid andγ the surface tension. Ifh� λ holds:v ≈

√
gh.

5.2 Solutions of the wave equation

5.2.1 Plane waves

In n dimensions a harmonic plane wave is defined by:

u(~x, t) = 2nû cos(ωt)
n∑

i=1

sin(kixi)

20
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The equation for a harmonic traveling plane wave is:u(~x, t) = û cos(~k · ~x± ωt+ ϕ)

If waves reflect at the end of a spring this will result in a change in phase. A fixed end gives a phase change of
π/2 to the reflected wave, with boundary conditionu(l) = 0. A lose end gives no change in the phase of the
reflected wave, with boundary condition(∂u/∂x)l = 0.

If an observer is moving w.r.t. the wave with a velocityvobs, he will observe a change in frequency: the

Doppler effect. This is given by:
f

f0
=
vf − vobs

vf
.

5.2.2 Spherical waves

When the situation is spherical symmetric, the homogeneous wave equation is given by:

1
v2

∂2(ru)
∂t2

− ∂2(ru)
∂r2

= 0

with general solution:

u(r, t) = C1
f(r − vt)

r
+ C2

g(r + vt)
r

5.2.3 Cylindrical waves

When the situation has a cylindrical symmetry, the homogeneous wave equation becomes:

1
v2

∂2u

∂t2
− 1
r

∂

∂r

(
r
∂u

∂r

)
= 0

This is a Bessel equation, with solutions which can be written as Hankel functions. For sufficient large values
of r these are approximated by:

u(r, t) =
û√
r

cos(k(r ± vt))

5.2.4 The general solution in one dimension

Starting point is the equation:

∂2u(x, t)
∂t2

=
N∑

m=0

(
bm

∂m

∂xm

)
u(x, t)

wherebm ∈ IR. Substitutingu(x, t) = Aei(kx−ωt) gives two solutionsωj = ωj(k) as dispersion relations.
The general solution is given by:

u(x, t) =

∞∫
−∞

(
a(k)ei(kx−ω1(k)t) + b(k)ei(kx−ω2(k)t)

)
dk

Because in general the frequenciesωj are non-linear ink there is dispersion and the solution cannot be written
any more as a sum of functions depending only onx± vt: the wave front transforms.

5.3 The stationary phase method

Usually the Fourier integrals of the previous section cannot be calculated exactly. Ifωj(k) ∈ IR the stationary
phase method can be applied. Assuming thata(k) is only a slowly varying function ofk, one can state that the
parts of thek-axis where the phase ofkx− ω(k)t changes rapidly will give no net contribution to the integral
because the exponent oscillates rapidly there. The only areas contributing significantly to the integral are areas

with a stationary phase, determined by
d

dk
(kx− ω(k)t) = 0. Now the following approximation is possible:

∞∫
−∞

a(k)ei(kx−ω(k)t)dk ≈
N∑

i=1

√√√√ 2π
d2ω(ki)

dk2
i

exp
[
−i14π + i(kix− ω(ki)t)

]
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5.4 Green functions for the initial-value problem

This method is preferable if the solutions deviate much from the stationary solutions, like point-like excitations.
Starting with the wave equation in one dimension, with∇2 = ∂2/∂x2 holds: ifQ(x, x′, t) is the solution with

initial valuesQ(x, x′, 0) = δ(x − x′) and
∂Q(x, x′, 0)

∂t
= 0, andP (x, x′, t) the solution with initial values

P (x, x′, 0) = 0 and
∂P (x, x′, 0)

∂t
= δ(x − x′), then the solution of the wave equation with arbitrary initial

conditionsf(x) = u(x, 0) andg(x) =
∂u(x, 0)
∂t

is given by:

u(x, t) =

∞∫
−∞

f(x′)Q(x, x′, t)dx′ +

∞∫
−∞

g(x′)P (x, x′, t)dx′

P andQ are called thepropagators. They are defined by:

Q(x, x′, t) = 1
2 [δ(x− x′ − vt) + δ(x− x′ + vt)]

P (x, x′, t) =

{ 1
2v

if |x− x′| < vt

0 if |x− x′| > vt

Further holds the relation:Q(x, x′, t) =
∂P (x, x′, t)

∂t

5.5 Waveguides and resonating cavities

The boundary conditions for a perfect conductor can be derived from the Maxwell equations. If~n is a unit
vector⊥ the surface, pointed from 1 to 2, and~K is a surface current density, than holds:

~n · ( ~D2 − ~D1) = σ ~n× ( ~E2 − ~E1) = 0
~n · ( ~B2 − ~B1) = 0 ~n× ( ~H2 − ~H1) = ~K

In a waveguide holds because of the cylindrical symmetry:~E(~x, t) = ~E(x, y)ei(kz−ωt) and ~B(~x, t) =
~B(x, y)ei(kz−ωt). From this one can now deduce that, ifBz andEz are not≡ 0:

Bx =
i

εµω2 − k2

(
k
∂Bz

∂x
− εµω∂Ez

∂y

)
By =

i

εµω2 − k2

(
k
∂Bz

∂y
+ εµω

∂Ez
∂x

)
Ex =

i

εµω2 − k2

(
k
∂Ez
∂x

+ εµω
∂Bz

∂y

)
Ey =

i

εµω2 − k2

(
k
∂Ez
∂y
− εµω∂Bz

∂x

)
Now one can distinguish between three cases:

1. Bz ≡ 0: the Transversal Magnetic modes (TM). Boundary condition:Ez|surf = 0.

2. Ez ≡ 0: the Transversal Electric modes (TE). Boundary condition:
∂Bz

∂n

∣∣∣∣
surf

= 0.

For the TE and TM modes this gives an eigenvalue problem forEz resp.Bz with boundary conditions:(
∂2

∂x2
+

∂2

∂y2

)
ψ = −γ2ψ with eigenvaluesγ2 := εµω2 − k2

This gives a discrete solutionψ` with eigenvalueγ2
` : k =

√
εµω2 − γ2

` . Forω < ω`, k is imaginary
and the wave is damped. Therefore,ω` is called thecut-off frequency. In rectangular conductors the
following expression can be found for the cut-off frequency for modes TEm,n of TMm,n:

λ` =
2√

(m/a)2 + (n/b)2
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3. Ez andBz are zero everywhere: the Transversal electromagnetic mode (TEM). Than holds:k =
±ω√εµ andvf = vg, just as if here were no waveguide. Furtherk ∈ IR, so there exists no cut-off
frequency.

In a rectangular, 3 dimensional resonating cavity with edgesa, b andc the possible wave numbers are given

by: kx =
n1π

a
, ky =

n2π

b
, kz =

n3π

c
This results in the possible frequenciesf = vk/2π in the cavity:

f =
v

2

√
n2

x

a2
+
n2

y

b2
+
n2

z

c2

For a cubic cavity, witha = b = c, the possible number of oscillating modesNL for longitudinal waves is
given by:

NL =
4πa3f3

3v3

Because transversal waves have two possible polarizations holds for them:NT = 2NL.

5.6 Non-linear wave equations

TheVan der Polequation is given by:

d2x

dt2
− εω0(1− βx2)

dx

dt
+ ω2

0x = 0

βx2 can be ignored for very small values of the amplitude. Substitution ofx ∼ eiωt gives: ω = 1
2ω0(iε ±

2
√

1− 1
2ε

2). The lowest-order instabilities grow as12εω0. While x is growing, the 2nd term becomes larger

and diminishes the growth. Oscillations on a time scale∼ ω−1
0 can exist. Ifx is expanded asx = x(0) +

εx(1) + ε2x(2) + · · · and this is substituted one obtains, besides periodic,secular terms∼ εt. If it is assumed
that there exist timescalesτn, 0 ≤ τ ≤ N with ∂τn/∂t = εn and if the secular terms are put 0 one obtains:

d

dt

{
1
2

(
dx

dt

)2

+ 1
2ω

2
0x

2

}
= εω0(1− βx2)

(
dx

dt

)2

This is an energy equation. Energy is conserved if the left-hand side is 0. Ifx2 > 1/β, the right-hand side
changes sign and an increase in energy changes into a decrease of energy. This mechanism limits the growth
of oscillations.

TheKorteweg-De Vriesequation is given by:

∂u

∂t
+
∂u

∂x
− au

∂u

∂x︸ ︷︷ ︸
non−lin

+ b2
∂3u

∂x3︸ ︷︷ ︸
dispersive

= 0

This equation is for example a model for ion-acoustic waves in a plasma. For this equation, soliton solutions
of the following form exist:

u(x− ct) =
−d

cosh2(e(x− ct))

with c = 1 + 1
3ad ande2 = ad/(12b2).
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The∇-operator

In cartesian coordinates(x, y, z) holds:

~∇ =
∂

∂x
~ex +

∂

∂y
~ey +

∂

∂z
~ez , gradf = ~∇f =

∂f

∂x
~ex +

∂f

∂y
~ey +

∂f

∂z
~ez

div ~a = ~∇ · ~a =
∂ax

∂x
+
∂ay

∂y
+
∂az

∂z
, ∇2f =

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

rot ~a = ~∇× ~a =
(
∂az

∂y
− ∂ay

∂z

)
~ex +

(
∂ax

∂z
− ∂az

∂x

)
~ey +

(
∂ay

∂x
− ∂ax

∂y

)
~ez

In cylinder coordinates(r, ϕ, z) holds:

~∇ =
∂

∂r
~er +

1
r

∂

∂ϕ
~eϕ +

∂

∂z
~ez , gradf =

∂f

∂r
~er +

1
r

∂f

∂ϕ
~eϕ +

∂f

∂z
~ez

div ~a =
∂ar

∂r
+
ar

r
+

1
r

∂aϕ

∂ϕ
+
∂az

∂z
, ∇2f =

∂2f

∂r2
+

1
r

∂f

∂r
+

1
r2
∂2f

∂ϕ2
+
∂2f

∂z2

rot ~a =
(

1
r

∂az

∂ϕ
− ∂aϕ

∂z

)
~er +

(
∂ar

∂z
− ∂az

∂r

)
~eϕ +

(
∂aϕ

∂r
+
aϕ

r
− 1
r

∂ar

∂ϕ

)
~ez

In spherical coordinates(r, θ, ϕ) holds:

~∇ =
∂

∂r
~er +

1
r

∂

∂θ
~eθ +

1
r sin θ

∂

∂ϕ
~eϕ

gradf =
∂f

∂r
~er +

1
r

∂f

∂θ
~eθ +

1
r sin θ

∂f

∂ϕ
~eϕ

div ~a =
∂ar

∂r
+

2ar

r
+

1
r

∂aθ

∂θ
+

aθ

r tan θ
+

1
r sin θ

∂aϕ

∂ϕ

rot ~a =
(

1
r

∂aϕ

∂θ
+

aθ

r tan θ
− 1
r sin θ

∂aθ

∂ϕ

)
~er +

(
1

r sin θ
∂ar

∂ϕ
− ∂aϕ

∂r
− aϕ

r

)
~eθ +(

∂aθ

∂r
+
aθ

r
− 1
r

∂ar

∂θ

)
~eϕ

∇2f =
∂2f

∂r2
+

2
r

∂f

∂r
+

1
r2
∂2f

∂θ2
+

1
r2 tan θ

∂f

∂θ
+

1
r2 sin2 θ

∂2f

∂ϕ2

General orthonormal curvelinear coordinates(u, v, w) can be obtained from cartesian coordinates by the trans-
formation~x = ~x(u, v, w). The unit vectors are then given by:

~eu =
1
h1

∂~x

∂u
, ~ev =

1
h2

∂~x

∂v
, ~ew =

1
h3

∂~x

∂w

where the factorshi set the norm to 1. Then holds:

gradf =
1
h1

∂f

∂u
~eu +

1
h2

∂f

∂v
~ev +

1
h3

∂f

∂w
~ew

div ~a =
1

h1h2h3

(
∂

∂u
(h2h3au) +

∂

∂v
(h3h1av) +

∂

∂w
(h1h2aw)

)
rot ~a =

1
h2h3

(
∂(h3aw)
∂v

− ∂(h2av)
∂w

)
~eu +

1
h3h1

(
∂(h1au)
∂w

− ∂(h3aw)
∂u

)
~ev +

1
h1h2

(
∂(h2av)
∂u

− ∂(h1au)
∂v

)
~ew

∇2f =
1

h1h2h3

[
∂

∂u

(
h2h3

h1

∂f

∂u

)
+

∂

∂v

(
h3h1

h2

∂f

∂v

)
+

∂

∂w

(
h1h2

h3

∂f

∂w

)]
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The SI units

Basic units
Quantity Unit Sym.
Length metre m
Mass kilogram kg
Time second s
Therm. temp. kelvin K
Electr. current ampere A
Luminous intens. candela cd
Amount of subst. mol mol

Extra units
Plane angle radian rad
solid angle sterradian sr

Derived units with special names
Quantity Unit Sym. Derivation

Frequency hertz Hz s−1

Force newton N kg ·m · s−2

Pressure pascal Pa N ·m−2

Energy joule J N ·m
Power watt W J · s−1

Charge coulomb C A · s
El. Potential volt V W ·A−1

El. Capacitance farad F C ·V−1

El. Resistance ohm Ω V ·A−1

El. Conductance siemens S A ·V−1

Mag. flux weber Wb V · s
Mag. flux density tesla T Wb ·m−2

Inductance henry H Wb ·A−1

Luminous flux lumen lm cd · sr
Illuminance lux lx lm ·m−2

Activity bequerel Bq s−1

Absorbed dose gray Gy J · kg−1

Dose equivalent sievert Sv J · kg−1

Prefixes

yotta Y 1024 giga G 109 deci d 10−1 pico p 10−12

zetta Z 1021 mega M 106 centi c 10−2 femto f 10−15

exa E 1018 kilo k 103 milli m 10−3 atto a 10−18

peta P 1015 hecto h 102 micro µ 10−6 zepto z 10−21

tera T 1012 deca da 10 nano n 10−9 yocto y 10−24
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