
UNIT 9: QUANTUM HARMONIC OSCILLATOR

After this unit, you should be able to
• Compute what frequency of light can be emitted and absorbed, given a set of allowed ener-

gies for a quantum system.

• Use the allowed energies for a system to explain whether it is more likely that the system is
described by a harmonic oscillator or infinite square well potential.

• Determine the potential that led to a given measured spectrum.

A more realistic potential
While there are some artificially created systems that we can model as something close to an infinite
square well, most potential energy functions (force laws) are somewhat different. In this chapter,
we will consider the quantum equivalent of a mass on a spring, which you studied in introductory
classical mechanics.

One aspect of quantum mechanics is that it is much harder to solve for the dynamics of a
system than in classical mechanics. For all but some very simple systems, the solution is done
numerically using a computer, or we simply learn about quantum systems by observing them
experimentally. While this is highly technical, there are some useful things that we can learn about
quantum systems by understanding the output of the experiments or numerical calculations. For the
remainder of the course, we will just provide you with the energy eigenstates for a given potential,
and discuss what they mean.

Photon emission/absorption
A hydrogen atom has the following energy levels: -13.6 eV, -3.4 eV, and -1.5 eV. Suppose that
it starts in the ground (lowest energy) state. It can absorb light with photon energy either (-3.4-
(-13.6) )= 10.2 eV, or (-1.5 - (-13.6))= 12.1 eV. We can solve for the frequency of that light by
using hf = E, and therefore f = E/h. Here it is useful to use h in terms of electron volts (eV) to
get:

f1 =
10.2 eV

4.135667× 10−15eV · s
= 2.466× 1015s−1 (1)

and similarly for f2. Those are the frequencies of light that can be absorbed by a hydrogen atom
in the ground state.1 If the hydrogen atom absorbs light of frequency f1, then it is now in the state
with energy -3.4 eV.

On the other hand, suppose that the hydrogen atom is in the first excited state (the one at -3.4
eV). It may be in that state because it absorbed light as in the previous paragraph, or we can induce
an excitation using an electric field or temperature. In this case, it can absorb light of energy (-1.5

1In reality, this is broadened a little bit by temperature effects.
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Figure 1: An O2 molecule, which is present in the air. The electrons (in yellow, this is an averaged
view of the electronic wave function) bind the nuclei (in red) together. The nuclei act as if they
are connected by a spring, which gives rise to evenly spaced quantized energy levels that can be
observed as absorption of infrared light.

- (-3.4))= 1.9 eV to go to the level at -1.5 eV, or it can emit light of energy 10.2 eV to go back to
the ground state. This is the origin of the emission lines of atoms.

Harmonic oscillator: verifying the ground state

In the previous section, we considered only a very simple and idealized potential, U(x). This
choice was to make the math relatively tractable. In reality, U(x) can be more complicated and can
require advanced techniques to find the energy eigenstates from the Schrödinger equation. Solving
the Schrödinger equation for the general case of many particles is an area of active research in
physics, so in this course we will not cover explicit solution of the equation. However, it is much
easier to check whether a given wave function is an energy eigenstate for a given U(x).

Let’s go through this for a harmonic oscillator potential. The Schrödinger equation is given by:

− h̄2

2m

d2Ψ(x)

dx2
+

1

2
kx2Ψ(x) = EΨ(x). (2)

In contrast to the infinite square well, there are no boundary conditions on this; the wave function
can be non-zero everywhere in space.

Let’s try a guess wave function: Ψ(x) = A sin(bx), where we use b because k is already taken
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for the spring constant. Then plugging that into the equation, we get

h̄2b2

2m
A sin(bx) +

1

2
kx2A sin(bx) = EA sin(bx) (3)

h̄2b2

2m
+

1

2
kx2 = E (4)

(5)

This is NOT an energy eigenstate, since there is no way to set A, k, and E such that this equation
is satisfied at all values of x.

Let’s try a better guess2: Ψ(x) = Ae−αx
2 . We take the derivative on the left-hand side and find:

− h̄2

2m
A(4α2x2 − 2α)e−αx

2

+
1

2
kx2Ae−αx

2

= EAe−αx
2

(6)

x2

(
1

2
k − 4h̄2α2

2m

)
+

(
h̄2α

m
− E

)
= 0 (7)

The parts in the parentheses must each equal zero for this equation to be true for all values of x.
This means that

α =
1

2h̄

√
mk (8)

E =
h̄2α

m
=

h̄

2m

√
mk. (9)

To simplify the equation for energy, often this is written in terms of ω, where k = mω2, so that
E = h̄

2
ω. Note that when we solved for α, we could have chosen the negative value. That would

not have worked because ex2 diverges as x goes to infinity, so α must be positive for the wave
function to be normalizable.

Harmonic oscillator: spectrum
It turns out that just like the infinite square well, there are an infinite number of discrete solutions
to the Schrödinger equation for the harmonic oscillator. The functions are a bit complicated and
don’t offer a lot of physical intuition, so we will not list them here. However the spectrum is very
simple: En =

(
n+ 1

2

)
h̄ω, where n = 0, 1, 2, . . .. Note here that n can be zero, unlike the infinite

square well.
Contrast the harmonic oscillator result with the result for the infinite square well: En = h̄2n2π2

2mL2 ,
with n = 1, 2, . . .. The harmonic oscillator has evenly spaced energies, called energy levels, while
the infinite square well has energies that get farther apart as n increases. The difference between
these two is the potential energy term, U(x). This means that by looking at the spectrum; that is,
what light is emitted and absorbed by the object, we can tell something about the potential energy
in the quantum system! If for example we see evenly spaced levels, then it may be that the potential
energy looks like a harmonic oscillator. By measuring the spacing between the levels we can tell
what the value of k is for that oscillator.

2The guess and check method is a long-standing and useful tool in physics!
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Figure 2: Energy level diagrams for the harmonic oscillator and infinite square well. The energy
levels are spaced differently. Light can only be absorbed and emitted in units equal to the difference
between the energy levels.

Energy level diagrams

For the rest of the class, we will be using energy level diagrams to understand the "allowed"
energies for a quantum system. In Fig 2, we show diagrams for two different potentials: a harmonic
oscillator and square well. The differences between the energy levels tell us what frequencies of
light can be absorbed by the system.

Using energy levels to determine the potential

A common way of understanding the vibrations in molecules is to send infrared light through a
gas, and measure what frequencies are absorbed by the vibrations of atoms. These vibrations are
often well-described as harmonic oscillators. Each type of vibration has its own effective mass and
spring constant.

As an example, when infrared light is passed through the atmosphere, which is filled with
water, some frequencies are absorbed by the water. By reading off the frequency of light, we can
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Figure 3: Solar irradiation at the Earth’s surface, filtered by frequency. Image credit.By Nick84
- File:Solar_spectrum_ita.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/
index.php?curid=24648395

https://commons.wikimedia.org/w/index.php?curid=24648395
https://commons.wikimedia.org/w/index.php?curid=24648395
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tell ω by using

Ephoton = hf (10)

Ephoton =
3

2
h̄ω − 1

2
h̄ω = h̄ω, (11)

since the photon will only be absorbed if it matches the difference in energy levels of the vibrational
system. This shows up as dips in the amount of light from the sun that we observe on earth (Fig 3).
Each dip is due to a harmonic oscillator of the characteristic frequency.


