
UNIT 11: BAND STRUCTURE

After this unit, you should be able to
• Determine whether a material is transparent from the energy levels and filling.

• Determine whether a material is metallic or insulating from the energy levels and filling.

• Use a semi-classical model to explain

Introduction
In this unit, we will discuss the behavior of electrons inside materials, in a qualitative way. The
quantum mechanical energy levels become partially continuous in a large system, but there are
gaps. These gaps act very similarly to the gaps you’ve already seen in atoms, in that they can
prevent materials from absorbing light of frequencies that don’t correspond to energy level differ-
ences. This effect explains why for example windows are transparent while metal is not. It is also
the reason for variety of colors that we see in the world around us.

We will also consider the momentum of the energy eigenstates, and we will find that the gaps
in energy also create a barrier for electrons to change their momentum. To analyze the motion of
electrons, we will use a semi-classical model, which is commonly used to predict the behavior of
electronics. This model assumes that the dynamics of electrons are as they would be in classical
mechanics, but that they can only have states that correspond to quantum states. So while a purely
classical model would have continuous momentum and energy, the semiclassical description has
gaps. This effect explains the existence of insulators–materials that have many electrons, but do
not conduct electricity because the electrons are stuck and cannot change their momentum.

Many particles in an infinite square well
Let’s start with a very simple model of electrons in a material, let’s imagine something like a
copper wire. We will assume that the electrons are freely able to move, which just means that the
potential energy is flat. We know how to solve this problem, the energy eigenstates are:
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with energies
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For an electron with wave function Ψn, the momentum has an equal probability of being

pn = ±h̄nπ
L

= ±
√

2mEn, (3)

because sin(kx) = eikx−e−ikx

2i
and the momentum of eikx is h̄k.
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Figure 1: Energy versus momentum of the energy eigenstates for two lengths of infinite square
well. As the well becomes larger, the graph fills in.

Now let’s consider putting Ne electrons in a wire of length L. To obtain the ground state, all
states are filled up to nmax = Ne/2. So the energy of the highest energy electron is

Emax =
h̄2π2

8m

(
Ne

L

)2

, (4)

which is called the Fermi level. This only depends on the fraction Ne

L
, i.e., the number of electrons

per length, which is the density of electrons. We will call the electron density ne ≡ Ne

L
.

Since the properties only depend on the electron density, we can take the limit as L → ∞
while keeping the electron density constant to approximate a material. This works because a piece
of metal or other material is often about 1 mm in size, which is 106 times bigger than the 1 nm
sizes where the individual energy levels are apparent. This is diagrammed in Fig 2, where the
Fermi level is diagrammed on a continuous line (which is really made up of many states) as a
function of the electron density.

Adding a little more realism: a corrugated potential.

To add a little more realism, let’s add a potential to our infinite square well. This represents (very
approximately) the effect of the atoms on the electrons in the material. We will add the potential1

V (x) = 2U cos(gx) (5)

1This model is from Andreas Wacker’s band structure introduction. You can find more details here www.
teorfys.lu.se/staff/Andreas.Wacker/Scripts/

www.teorfys.lu.se/staff/Andreas.Wacker/Scripts/
www.teorfys.lu.se/staff/Andreas.Wacker/Scripts/
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Figure 2: The energy level of the highest energy electron in the ground state depends on the number
of electrons per unit volume. This energy level is called the Fermi level.
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Figure 3: How the electronic states vary as we change U , which represents the strength of the
interaction of atoms with the electrons. For U larger than zero, gaps in the allowed energies form.
The intensity of the plot is the probability density (in momentum) that a given energy eigenstate
has.
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Figure 4: (left) How the filled energy levels (everything below the line is filled in the ground state)
depend on the number of valence electrons per atom. The Fermi level increases as the density of
electrons increases. (right) The same graph as you’ll often see it for materials. Only one period of
each energy band is shown, and the x-axis is now the so-called "crystal momentum."

U is the strength of the potential, representing how much the atomic nuclei2 affect the electrons in
the material. We will not go through the solution in detail.

In Fig 3, we show the solutions of this potential. This kind of plot is called a “band structure”
diagram; presumably named so because there are bands of allowed energies, rather than isolated
allowed energies as in atoms. Each line is called a band. The energy gap between the bands is
called the “band gap,” for hopefully obvious reasons. Note that the bands fold back on themselves
so that high energy does not imply high momentum; this is an effect of the potential, and happens
in more realistic models of materials.

Given the energy levels, the behavior of the material depends strongly on how the energy
levels are filled, similar to the case of atoms. In Fig 4, we diagram this effect. For example, if
this material were made up of sodium (Na), which has one valence electron per atom, then the
first band would be half-filled. This means that there are excited states with very little extra energy
above the ground state. On the other hand, if we were to make this material out of something with
two valence electrons per atom, such as magnesium (Mg), then we would expect the band to be
completely filled, and the first excited state is several eV higher than the ground state. Moving to
three electrons per atom, now the filled levels are in the middle of a band again.

Light absorption of metals and insulators.
For light absorption, we apply the same rules as we did for atoms. In the case of metals, (ne = 1, 3
in Fig 4) then even very low energy photons can be absorbed, since the lowest excited state is just
above the ground state. In fact, the metal can absorb photons of any energy up to the difference

2technically there are ‘free electrons’ and ‘bound electrons’, and we’re really talking about ions.
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in energy between the Fermi level and the gap. Metals are reflective because they very efficiently
absorb and re-emit visible light.

On the other hand, the first excited state for ne = 2 in Fig 4 requires a promotion of an electron
across the gap. If the gap is large enough then the material can be transparent! For example, the
reason that diamond is transparent is that it has a gap of over 6 eV, while photons in the visible
range of frequencies have energies less than 4 eV. So those photons just don’t have enough energy
to overcome the gap, no matter how many are sent through the material. This is very similar to the
photoelectric effect!

Electrical conductivity: metals and insulators
Finally, let’s think about what happens when we apply an electric field to a material. We would
like to determine how the electrons respond. While in principle one can do this using quantum
mechanics, typically a semi-classical approximation is used. That means that we use quantum
mechanics to determine the energy and momentum of electrons, and given that, we approximate
their dynamics using classical mechanics. This sort of model is used to accurately model how
semiconductors behave and is used to design modern computer hardware.

Consider a single free electron with momentum p(0) = p0 and energy E(0) = E0. We apply
a constant electric field, which applies a force on the electron F = qE . Let’s assume that the
force is in the positive direction. Newton’s 3rd law tells us that F = dp

dt
, so this force causes the

momentum to increase, and therefore the energy to increase, since E(p) = p2

2m
. The solution is

that p(t) = Ft, so the electron accelerates. This flow of electrons is electric current. For a free
electron, the acceleration is allowed because there are states, and we have derived something we
already know–that a free electron accelerates under an electric field.

Now let’s consider the 1 electron per atom situation in Fig 4. The electron in the right-most
state can increase its momentum and energy slightly due to the force on it. This leaves an empty
state, which the second-to-right electron can move into, and so on, so that all electrons shift up
in momentum. The entire system then has a non-zero net momentum, which results in a flow of
current. This is why metals conduct electricity.

On the other hand, let’s consider the 2 electron per atom situation in Fig 4. The electric field
wants to increase the momentum of the right-most electron, but there are no allowed energy levels
with slightly higher energy and higher momentum. So the right-most electron is stuck. This is
true as well for the left-most electron; it cannot increase its momentum because there is another
electron there. This is the reason that materials with electrons filled up to the gap block electrical
flow, which we call insulators.


