
Three point charges $Q_1=7 \ \mu\text{C}$, $Q_2=-10.5 \ \mu\text{C}$ and $Q_3=7 \ \mu\text{C}$ are placed a distance L=1.3 meter apart on the x-axis at points (-L, 0), (0,0), and (L, 0) as shown in the figure. A fourth charge $Q_4=-10.5 \ \mu\text{C}$ is placed at a position (0, h) where h = 2.6 m.

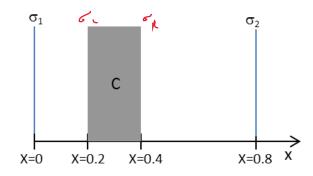
1) What is x-component of the force on Q_4 due to the charges Q_1 , Q_2 , and Q_3 ?

a. $F_{Q4x} = 0.147 \text{ N}$ b. $F_{Q4x} = -0.07 \text{ N}$ c. $F_{Q4x} = -0.217 \text{ N}$ d. $F_{Q4x} = 0.077 \text{ N}$ c) $F_{Q4x} = 2\text{ero}$ 2) What is y-component of the force on Q_4 due to the charges $Q_1, Q_2, \text{ and } Q_3$? a. $F_{Q4y} = 2\text{ero}$ (b) $F_{Q4y} = 0.00674 \text{ N}$ c. $F_{Q4y} = 0.00674 \text{ N}$ c. $F_{Q4y} = -0.00979 \text{ N}$ d. $F_{Q4y} = -0.00979 \text{ N}$ e. $F_{Q4y} = -0.287 \text{ N}$ (c) $F_{Q4y} = -2 |Q_1, Q_2|$

$$F_{Q_{1}}y = \frac{\left|Q_{2}Q_{1}\right|}{4\pi\epsilon_{0}h^{2}} - \frac{2\left|Q_{1}Q_{1}\right|}{4\pi\epsilon_{0}\left(h^{2}+L^{2}\right)\left(h^{2}+L^{2}\right)^{1}/2}$$

$$F_{Q_{1}}y = \frac{1}{4\pi\epsilon_{0}}\left(\frac{\left(10.5\times10^{-6}\right)^{2}}{2.6^{2}} - \frac{2(7)\left(10.5\right)\left(10^{-6}\right)^{2}}{(2.6^{2}+1.3^{2})^{3}/2}\right)$$

$$= \frac{\left(10^{-6}\right)^{2}}{4\pi\epsilon_{0}}\left(\frac{10.5^{2}}{2.6^{2}} - \frac{2\times7\times10.5\times2.6}{(2.6^{2}+1.3^{2})^{3}/2}\right)$$


$$F_{Q_{1}}y = 0.00674N$$

Two conducting spheres of radii $r_1 = 20$ mm and $r_2 = 5$ mm are charged with $q_1 = 0.4 \ \mu\text{C}$ and $q_2 = 0.12 \ \mu\text{C}$ respectively. The spheres are separated by a large distance.

- $\Delta V = \frac{V_2}{4\pi\epsilon_s v_2} \frac{9}{4\pi\epsilon_s V_1} = \frac{1}{4\pi\epsilon_s} \left(\frac{0.12 \times 10^{-6}}{5 \times 10^{-3}} \frac{0.4 \times 10^{-6}}{20 \times 10^{-3}} \frac{1}{20 \times 10^{-3}} \right)$ $\Delta V = 3.6 \times 10^{-3}$ 3) What is the potential difference between the surfaces of the two spheres?
 - (a) 3.6×10^4 Volts b. 1.8×10^5 Volts c. 2.16×10^5 Volts
- 4) If the spheres are connected by a thin conducting wire, in which direction (if any) would positive charge flow?
 - a. no net charge is transferred between the two spheres
 - b. from sphere 1 to sphere 2
 - c. from sphere 2 to sphere 1

heres has a greater potential than sphere I So charge flows from sphere 2 to sphere

Two infinite nonconducting sheets of charge and one infinite conducting slab are placed perpendicular to the x direction as shown in the following figure. The conducting slab is electrically neutral and labeled C. The charge densities on the two sheets of charge are $\sigma_1 = +5 \ \mu\text{C/m}^2$ and $\sigma_2 = -9.5 \ \mu\text{C/m}^2$.

for an infinite slab,
$$E = \frac{\sigma}{2\varepsilon_0}$$

5) The x-component of the electric field at x = 0.9 is:

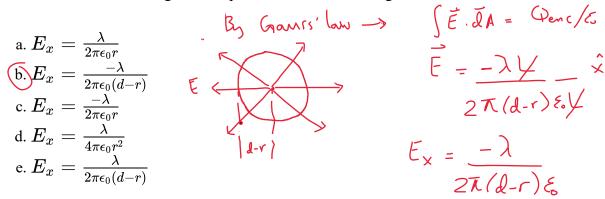
(a. $E_x = -0.254 \times 10^6 \text{ V/m}$ b. $E_x = 0.536 \times 10^6 \text{ V/m}$ c. $E_x = -0.536 \times 10^6 \text{ V/m}$

so at
$$x = 6.9$$
, $E = \frac{62}{2} + \frac{61}{22}$
 $E = \frac{1}{22} (-9.5 + 5) \times 10^{-6}$
 $Z = -0.256 \times 10^{6} V/m$

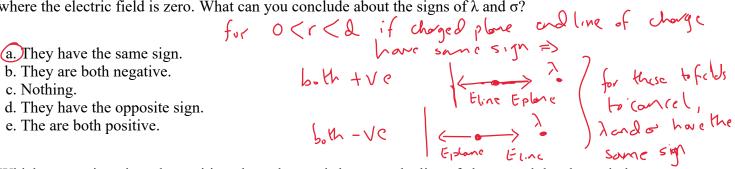
6) The induced charge density on the left side of the conductor (i.e. at x=0.2) is In the mobile of the conductor, E = 0

$$\begin{array}{c} (a) \sigma_{L} = -7.25 \ \mu C/m^{2} \\ b. \sigma_{L} = -2.25 \ \mu C/m^{2} \\ c. \sigma_{L} = -5 \ \mu C/m^{2} \\ d. \sigma_{L} = -2.5 \ \mu C/m^{2} \\ e. \sigma_{L} = -14.5 \ \mu C/m^{2} \end{array}$$

$$\begin{array}{c} I \cdot e & \sigma_{1} + \sigma_{L} - \sigma_{L} -$$


b. They are both negative.

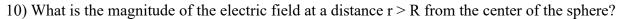
e. The are both positive.


c. Nothing.

An infinite sheet with charge density per unit area σ is placed along the y axis at x=0. An infinite line of charge with charge density per unit length λ is located at x=d and y=0 and oriented in the z direction (out of page) as shown in the figure.

7) What is the x component of the electric field due ONLY to the infinite line of charge at the point on the x axis a distance r to the right of the plane, as shown in the figure?

8) You are told that there is a point on the x axis between the charged plane and the line of charge (0 < r < d)where the electric field is zero. What can you conclude about the signs of λ and σ ?



d

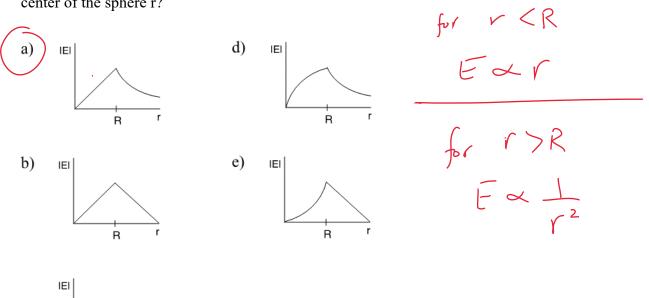
9) Which expression gives the position along the x axis between the line of charge and the charged plane at which the electric field is zero? 1 14

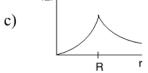
a.
$$r = \frac{\lambda}{\pi\sigma}$$

(b) $r = d - \frac{\lambda}{\pi\sigma}$
c. $r = d + \frac{\lambda}{\pi\sigma}$
 $for t-field to be zero along the x-axis
 $For t-field to be zero along to be zero along the x-axis
 $For t-field to be zero along to be zero a$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

An insulating sphere of radius R carries a charge density per unit volume ρ as shown in the figure.

	as (E. dA = Qenc/2.
a. $ E =rac{1}{4\pi\epsilon_0}rac{ ho}{r^2}$	
b. $ E =rac{1}{3\epsilon_0}rac{ ho R^2}{r}$	for $r > R$, $Q_{enc} = \rho \frac{4}{3} \pi R^3$
c. $ E =rac{1}{4\pi\epsilon_0}rac{ ho R^3}{r^2}$	$E(4\pi v^2) = \frac{4\pi R^3}{3}\rho$
d. $ E =rac{1}{3 ho\epsilon_0}rac{R^3}{r^2}$	
(e.) $E =rac{1}{3\epsilon_0}rac{ ho R^3}{r^2}$	$E = \frac{1}{3\epsilon_0} \frac{\rho R^3}{r^2}$

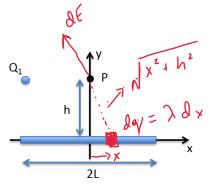

11) What is the magnitude of the electric field at a distance r < R from the center of the sphere?


a.
$$|E| = \frac{\rho r^2}{3\epsilon_0}$$

b. $|E| = \frac{\rho R}{6\epsilon_0}$
c. $|E| = \frac{\rho R}{3\epsilon_0}$
d. $|E| = \frac{\rho R}{3\epsilon_0}$
e. $|E| = \frac{\rho r}{6\epsilon_0}$
for $r < R$, only the charge enclosed inside to E-field of r is the field of r of $r < r$ of r of r

r

<u>_ R</u>

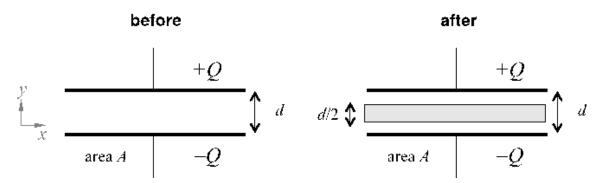

12) Which of the following best describes the magnitude of the |E| field as a function of the distance from the center of the sphere r?

a. e b. c c. d d. b e. a

A charge Q_1 is placed at the point (-L, h) and a rod of length 2 m and total charge charge $Q_{rod} = 18 \ \mu C$ distributed uniformly along its length, is placed with its ends at (-L, 0) and (0, L) as shown in the figure.

١

13) What is the linear charge density of the rod?

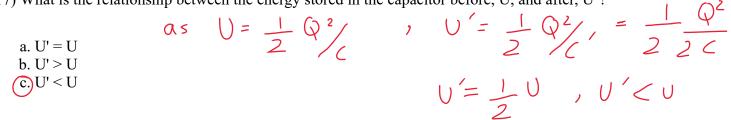

$$\lambda = \frac{Q_{rod}}{2L} = \frac{18mc}{2m} = \frac{9mc}{m}$$

a. $\lambda = 36 \ \mu C \ /m$ b. $\lambda = 9 \ \mu C/m$ c. $\lambda = 4.5 \ \mu C/m$

14) Which expression gives the electric field at the point $\mathbf{P} = (0, h)$ due to the point charge and line of charge?

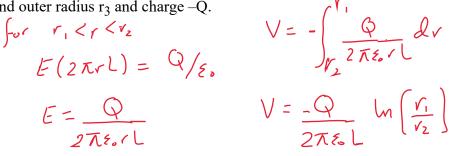
a.
$$\vec{E} = \frac{kQ_1}{L^2}\hat{x}$$

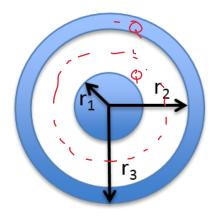
(b) $\vec{E} = k\lambda \int_{-L}^{L} \frac{dx}{(x^2+h^2)}\hat{y} + \frac{kQ_1}{L^2}\hat{x}$
c. $\vec{E} = k\lambda \int_{-L}^{L} \frac{dx}{(x^2+h^2)}\hat{y}$
d. $\vec{E} = k\lambda \int_{-L}^{L} \frac{xdx}{(x^2+h^2)^{\frac{3}{2}}}\hat{y} + \frac{kQ_1}{L^2}\hat{x}$
e. $\vec{E} = k\lambda \int_{-L}^{L} \frac{hdx}{(x^2+h^2)^{\frac{3}{2}}}\hat{y} + \frac{kQ_1}{L^2}\hat{x}$
for \vec{E}_{line} consider element
 dq as shown above
Note that all components of dE
 $dE_{y} = \frac{Kdq}{x^2+h^2} = \frac{K\lambda dx}{x^2+h^2}$
 $\vec{E} = E_{line} + E_{event}$


- 15) A second charge, Q₂, is placed at (L,h). What value should Q₂ take in order that the total electric field at (0, h) is zero
 - a. $Q_2 = Q_1$ b. It is not possible to make the field at (0, h) vanish by placing a point charge at (L, h). c. $Q_2 = -Q_1$

A parallel plate capacitor with a large surface area A compared to the separation between the plates d has charge Q. After a certain time, a conducting slab with the same area A and a thickness of half the separation between

Q. After a certain time, a conducting slab with the same area A and a thickness of half the separation between the plates $d/2$ is inserted exactly in the middle of the two plates.
Consider in as two capacitors in
16) What is the relationship between the capacitance before, C, and after, C?
$C_1 = \varepsilon_0 A$, $C_2 = \varepsilon_0 A$ and $C = \varepsilon_0 A$
a. C' = C $\overline{k/9}$ $\overline{k/4}$ d/4
b. $C' = C/2$ C' = 2C C' = 2E A = 2C C = 2E A = 2C C = 2E
$\bigcirc C' = 2C$ $\xrightarrow{\uparrow} = \frac{\alpha}{1} + \frac{\alpha}{1} + \frac{\alpha}{1} = 2C$
- (4 EA 4 ZA d

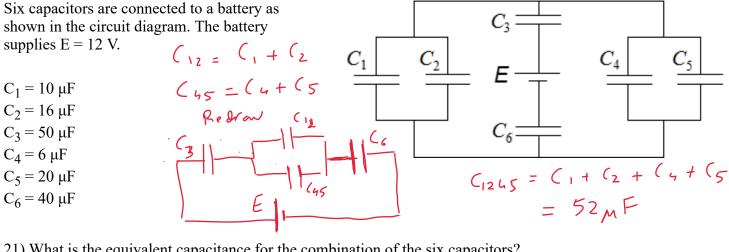

17) What is the relationship between the energy stored in the capacitor before, U, and after, U'?



18) Consider the "before" configuration shown above. In what direction can a charge be moved in the field created between the plates without doing any external work on the charge?

Note that the electricited 6/w the plates is parallel to the y-axis so no work's done if charge is moved perpendicular to the E-field -> along the x-axis a. parallel to the y-axis b. external work is always necessary c. parallel to the x-axis

A solid conducting cylinder of radius r_1 and length L with charge Q is placed inside a hollow conducting cylinder of the same length L with inner radius r_2 and outer radius r_3 and charge -Q.


19) How does the capacitance change if r₂ is decreased slightly keeping L, r₁, and r₃ unchanged.

- a. The capacitance decreases.
- (b.) The capacitance increases.
- c. The capacitance remains the same.
- 20) Suppose the cylinder is submerged in gasoline ($\varepsilon = 2.0$) so that there is gasoline between the plates. How does the capacitance change relative to the capacitance of the previous question?

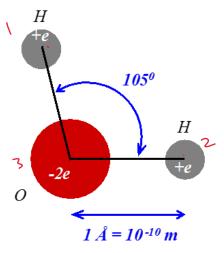
 $C = \frac{Q}{V} = \frac{2\pi \varepsilon_{\rm s} L}{\ln (r_{\rm s}/r_{\rm s})}$

if V2 decreases, C increases

a. $C_1 = C_0/2$ b. $C_1 = C_0$ $for \quad \mathcal{E} = 2, \quad \bigvee = \frac{-\varphi}{2\pi \mathcal{E}\mathcal{E}_0 \mathcal{L}} \quad \ln\left(\frac{r_1}{r_2}\right)$ $\mathcal{C} \cdot C_1 = 2C_0$ $\int_{1}^{\infty} \frac{2\pi \mathcal{E}\mathcal{E}_0 \mathcal{L}}{\ln\left(r_2/r_1\right)} \quad (1 = 2C_0)$

21) What is the equivalent capacitance for the combination of the six capacitors?

5. = 6 C123456 Cz C1245 a. $C_{123456} = 142 \ \mu F$ b. $C_{123456} = 92.6 \ \mu F$ $1 = \frac{1}{50} + \frac{1}{52} + \frac{1}{52}$ $c.C_{123456} = 15.6 \ \mu F$ (123456


22) Which capacitors have the same charge

Note that (2 and Co are inseries Capacitors in series have the same charge a. C_1 and C_4 $(b)C_3$ and C_6 c. C_4 and C_5

23) What is the energy stored in capacitor C_3 ?

(a)
$$U_3 = 350 \,\mu$$
J
b. $U_3 = 1120 \,\mu$ J
c. $U_3 = 3600 \,\mu$ J
(b) $U_3 = 3600 \,\mu$ J
(c) $U_3 = 3600 \,\mu$ J
(c) $U_3 = 3600 \,\mu$ J
(c) $U_3 = 350 \,\mu$ J
(c) $U_3 = 350 \,\mu$ J

 $U_3 = \frac{1}{2} \frac{Q^2}{C}$

A water molecule may be crudely approximated as two positively charged hydrogen atoms and a negatively charged oxygen atom, as shown in the figure. Note the electron charge $e = 1.6 \times 10^{-19} \text{ C}$, and the separation between the two hydrogen atoms is $1.6 \times 10^{-10} \text{ m}$.

- 24) What is the electric potential energy associated with this configuration of charges? (Let 0 corresponds to the three charges being infinitely far apart.) $\bigcup_{|D|=1} = \bigcup_{|D|=1} \bigcup_{|$
- a. $1.45 \times 10^{-18} \text{ J}$ (b) $-7.76 \times 10^{-18} \text{ J}$ c. $-9.22 \times 10^{-18} \text{ J}$ U total $= \frac{e^2}{4\pi\epsilon_0 (1.6\times 10^{-10})} + \frac{(-2e^2)}{4\pi\epsilon_0 (10^{-10})} + \frac{(-2e^2)}{4\pi\epsilon_0 (10^{-10})}$ U total $= \left(\frac{e^2}{4\pi\epsilon_0}\right) \left(\frac{1}{10^{-10}}\right) \left(\frac{1}{1\cdot6} - 2 - 2\right) = -7.76 \times 10^{-18} \text{ J}$

25) If the angle between the two hydrogen atoms is increased from 105 degrees to 180 degrees, while keeping the distance between the hydrogen and oxygen atoms fixed at 10^{-10} m, the electric potential energy of the system will

a.)decrease b. remain the same c. increase

This increases the distance blu the two hydrogen atoms, since U & I this decreases the potential energy U total becames more regative.