

A loop of wire of radius r = 0.25 m and resistivity 8 Ohms per meter lies in the x-y plane. The loop is fully contained in a spatially constant, but time-varying magnetic field. A graph of the time-dependence of the magnetic field is shown.

- 1) What is the direction of the induced current in the loop at t = 8 seconds?
 - a. The induced current is zero at t = 8 seconds
 - b. Counter-clockwise
 - c. Clockwise
- 2) What is the magnitude of the induced current at t = 1.5 seconds?

a.
$$I_{1.5} = 0$$
 A

b.
$$I_{1.5} = 0.0468 \text{ A}$$

c.
$$I_{1.5} = 0.0156 \text{ A}$$

d.
$$I_{1.5} = 0.0312 \text{ A}$$

e.
$$I_{1.5} = 0.159 \text{ A}$$

3) Compare the magnitude of the current at t = 4 seconds to the magnitude of the current at t = 7 seconds.

a.
$$|I_4| = |I_7|$$

b.
$$|I_4| < |I_7|$$

c.
$$|I_4| > |I_7|$$

Consider the electrical circuit shown. It consists of an ideal 18 Volt battery and four 36 Ω resistors and an 24 mH inductor. The switch has been in position **a** as shown for a long time.

4) What is the voltage across the inductor after the switch has been in position a for a long time?

a.
$$V_L = 9$$
 Volts

b.
$$V_L = 18 \text{ Volts}$$

c.
$$V_L = 0$$
 Volts

5) How much energy is stored in the inductor after the switch has been in position a for a long time?

a.
$$U_L = 0.003$$
 Joules

b.
$$U_L = 9$$
 Joules

c.
$$U_L = 0$$
 Joules

6) After being in position **a** for a long time, the switch is instantaneously moved to position **c**. What is the voltage across the inductor immediately after the switch is in position **c**?

a.
$$V_L = 6$$
 Volts

b.
$$V_L = 54 \text{ Volts}$$

c.
$$V_L = 18$$
 Volts

- 7) After being in position **a** for a long time, you have the option to instantaneously move the switch to either position **b** or position **c**. Which position will result in the energy in the inductor being dissipated the fastest?
 - a. Position **b**
 - b. Both positions will dissipate energy at the same rate.
 - c. Position c

Consider the electrical circuit shown. It consists of an ideal 18 Volt battery a 3.6 Ω resistor a 15 mF capacitor and a 24 mH inductor. The switch has been in position **a** for a long time.

8) After being in position **a** for a long time, the switch is moved to position **b**. What is the rate at which the current through the inductor is changing immediately after the switch is in position **b**?

a.
$$dI_L/dt = 5 A/s$$

b.
$$dI_L/dt = 750 \text{ A/s}$$

c.
$$dI_L/dt = 0.675 \text{ A/s}$$

9) Let I_{max} represent the maximum current that flows through the inductor while the switch is in position **b**. After the switch is moved to position b, what is the current through the inductor when the charge on the capacitor is $\frac{1}{4}$ its maximum value?

a.
$$I_{1/4} = 0.97 I_{max}$$

b.
$$I_{1/4} = 0.5 I_{max}$$

c.
$$I_{1/4} = 0.063 I_{max}$$

d.
$$I_{1/4} = 0.75 I_{max}$$

e.
$$I_{1/4} = 0.25 I_{max}$$

10) Which expression best represents the charge on the top plate of the capacitor if t=0 corresponds to the moment the switch was moved from position **a** to position **b**?

a.
$$Q(t) = +Q_{max}\sin(\omega t)$$

b.
$$Q(t) = +Q_{max}\cos(\omega t)$$

$$\operatorname{c.} \overset{\frown}{Q(t)} = 0$$

d.
$$Q(t) = -Q_{max}\sin(\omega t)$$

e.
$$Q(t) = -Q_{max} \cos(\omega t)$$

Consider the RC circuit shown. It consists of an ideal 18 Volt battery a 30 Ω resistor and a 15 mF capacitor. The capacitor consists of two circular plates separated by a small distance, and is initially uncharged. At time t=0, the switch is closed.

11) Compare the magnitude of the magnetic field at point G, a distance d above the wire, and point H, midway between the plates of the capacitor and a distance d above its center just after the switch is closed. Note d < r the radius of the capacitor plate.

a.
$$B_G > B_H$$

$$b. B_G < B_H$$

c.
$$B_G = B_H$$

12) How fast is the electric flux between the capacitor plates changing just after the switch is closed?

a.
$$d\Phi_E/dt = 3.39 \times 10^{10} \ Nm^2 C^{\text{--}1} s^{\text{--}1}$$

b.
$$d\Phi_E/dt = 6.78 \times 10^{10} \text{ Nm}^2\text{C}^{-1}\text{s}^{-1}$$

c.
$$d\Phi_E/dt = 4.79 \times 10^{10} \ Nm^2 C^{\text{--}1} s^{\text{--}1}$$

A linearly polarized electromagnetic wave propagates in vacuum. The electric field associated with the wave is:

$$ec{E}=E_0\sin(kx+\omega t)\hat{y}$$

The figure above shows a snapshot of the electric field at t=0.

13) At t = 0, which option best describes the relative magnitudes of the electric field at points A, B and C? Note that A, B and C lie on the x-y plane.

a.
$$E_C > E_A = E_B = 0$$
;

b.
$$E_A > E_C > E_B = 0$$
;

c.
$$E_A > E_C = E_B = 0$$

14) Which of the following best describes the magnetic field associated with the electromagnetic wave? Note $E_0 > 0$ and $B_0 > 0$.

a.
$$\vec{B} = -B_0 \sin(kx - \omega t)\hat{y}$$

b.
$$ec{B}=-B_0\sin(kx+\omega t)\hat{z}$$

c.
$$ec{B}=B_0\cos(kx+\omega t)\hat{y}$$

d.
$$ec{B}=B_0\sin(kx+\omega t)\hat{z}$$

e.
$$\vec{B} = -B_0 \sin(kx + \omega t)\hat{y}$$

15) If the amplitude of the magnetic field is $B_0 = 6 \times 10^{-5}$ T, what is the average intensity of the wave?

a.
$$6.08 \times 10^5 \text{ W/m}^2$$

b.
$$2.05 \times 10^5 \text{ W/m}^2$$

c.
$$3.04 \times 10^5 \text{ W/m}^2$$

d.
$$4.3 \times 10^5 \text{ W/m}^2$$

e.
$$7.74 \times 10^5 \text{ W/m}^2$$

Consider a beam of unpolarized light with initial intensity I_0 traveling in the +x direction. The beam traverses three linear polarizers parallel to the yz plane whose transmission axes (TA) are indicated in the figure above with $\theta_1 = 25^{\circ}$ and $\theta_3 = 65^{\circ}$.

- 16) Which of the following best describes the relationship between the initial intensity I_f ; and the final intensity I_f ?
 - a. $I_f = 0.121 I_0$
 - b. $I_f = 0$
 - c. $I_f = 0.0734 I_0$
- 17) Consider the situation where the 2nd and 3rd polarizers are exchanged with each other, how does the final intensity change?
 - a. I_f will be zero.
 - b. I_f will not change.
 - c. I_f will increase.
- 18) Now consider the situation where the third polarizer is replaced with a birefringent material whose slow and fast axes are aligned with the y and z axes respectively as shown in the figure. What is the polarization of the outgoing wave?

- a. Right circularly polarized.
- b. Left circularly polarized.
- c. Linearly polarized.

Consider the case of light traveling through three different materials in layers with indices of refraction n_1 , n_2 and n_3 , as shown in the figure.

19) Given the transition between layers 1 and 2 shown in the figure above, what can be concluded about these two materials?

a.
$$n_1 > n_2$$

b.
$$n_1 = n_2$$

c.
$$n_1 < n_2$$

20) If the light is totally reflected between material 2 and 3, which of the following holds?

a.
$$n_3 \le n_1 \sin(\theta_1)$$

b.
$$n_3 \ge n_1 \sin(\theta_1)$$

$$c. \ n_3 \ge n_1$$

Consider the electrical AC circuit shown. It consists of a variable frequency AC generator providing a voltage $V(t) = 18 \sin(\omega t)$ Volts, a 10 Ω resistor, a 15 μ F capacitor, and a 24 mH inductor.

- 21) To what frequency ω should the generator be set in order to maximize the peak voltage across the resistor?
 - a. $\omega = 1670 \text{ rad/s}$
 - b. $\omega = 0 \text{ rad/s}$
 - c. The peak voltage across the resistor does not depend on the frequency of the generator.
- 22) The generator is now set to the resonant frequency for this circuit. What is the maximum energy stored in the inductor at this frequency?
 - a. $U_{max} = 32.4 \text{ J}$
 - b. $U_{max} = 0.0389 J$
 - c. $U_{max} = 16.2 J$
- 23) With the generator set to the resonant frequency for this circuit, what is the average power dissipated by the resistor?
 - a. $< P_R > = 64.8 \text{ W}$
 - b. $< P_R > = 16.2 \text{ W}$
 - c. $<P_R> = 32.4 \text{ W}$
- 24) The generator frequency is now set to 1330 rad/s. Which element has the largest peak voltage?
 - a. generator
 - b. capacitor
 - c. inductor
 - d. They all have the same peak voltage.
 - e. resistor
- 25) With the generator frequency still set to 1330 rad/s, what is the first time after t=0, that the magnitude of the voltage across the resistor is a maximum?
 - a. $t = 3.78 \times 10^{-4} \text{ s}$
 - b. $t = 8.03 \times 10^{-4} \text{ s}$
 - c. t = 0.00118 s