Kinematics

$\mathbf{v}=\mathbf{v}_{0}+\mathbf{a t}$
$\mathbf{r}=\mathbf{r}_{0}+\mathbf{v}_{0} \mathrm{t}+\mathrm{at}^{2} / 2$
$\mathrm{v}^{2}=\mathrm{v}_{0}{ }^{2}+2 \mathrm{a}\left(\mathrm{x}-\mathrm{x}_{0}\right)$
$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}=32.2 \mathrm{ft} / \mathrm{s}^{2}$
$\mathrm{V}_{\mathrm{A}, \mathrm{B}}=\mathrm{V}_{\mathrm{A}, \mathrm{C}}+\mathrm{V}_{\mathrm{C}, \mathrm{B}}$

Uniform Circular Motion

$\mathrm{a}=\mathrm{v}^{2} / \mathrm{r}=\omega^{2} \mathrm{r}$
$\mathrm{v}=\omega \mathrm{r}$
$\omega=2 \pi / \mathrm{T}=2 \pi \mathrm{f}$

Dynamics

$\mathbf{F}_{\text {net }}=\mathrm{ma}=\mathrm{d} \mathbf{p} / \mathrm{dt}$
$F_{A, B}=-F_{B, A}$
$\mathrm{F}=\mathrm{mg}$ (near earth's surface)
$\mathrm{F}_{12}=-\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$ (in general)
(where $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$)
$F_{\text {spring }}=-k \Delta x$

Friction

$\mathrm{f}=\mu_{\mathrm{k}} \mathrm{N}$ (kinetic)
$\mathrm{f} \leq \mu_{\mathrm{S}} \mathrm{N}$ (static)

Work \& Kinetic energy

$\mathrm{W}=\int \mathbf{F} \cdot \mathbf{d} \mathbf{l}$
$\mathrm{W}=\mathbf{F} \cdot \Delta \mathbf{r}=\mathrm{F} \Delta \mathrm{r} \cos \theta$
(constant force)
$W_{\text {grav }}=-\operatorname{mg} \Delta y$
$\mathrm{W}_{\text {spring }}=-\mathrm{k}\left(\mathrm{x}_{2}{ }^{2}-\mathrm{x}_{1}{ }^{2}\right) / 2$
$\mathrm{K}=\mathrm{mv}^{2} / 2=\mathrm{p}^{2} / 2 \mathrm{~m}$
$\mathrm{W}_{\mathrm{NET}}=\Delta \mathrm{K}$

Potential Energy

$\mathrm{U}_{\text {gray }}=\mathrm{mgy}$ (near earth surface)
$\mathrm{U}_{\text {gray }}=-\mathrm{GMm} / \mathrm{r}$ (in general)
$\mathrm{U}_{\text {spring }}=\mathrm{kx}^{2} / 2$
$\Delta \mathrm{E}=\Delta \mathrm{K}+\Delta \mathrm{U}=\mathrm{W}_{\mathrm{nc}}$

Power

$\mathrm{P}=\mathrm{dW} / \mathrm{dt}$
$\mathrm{P}=\mathbf{F} \cdot \mathbf{v}($ for constant force $)$

System of Particles

$\mathbf{R}_{\mathrm{CM}}=\Sigma \mathrm{m}_{\mathrm{i}} \mathbf{r}_{\mathrm{i}} / \Sigma \mathrm{m}_{\mathrm{i}}$
$\mathbf{V}_{\mathrm{CM}}=\Sigma \mathrm{m}_{\mathrm{i}} \mathbf{v}_{\mathrm{i}} / \Sigma \mathrm{m}_{\mathrm{i}}$
$\mathbf{A}_{\mathrm{CM}}=\Sigma \mathrm{m}_{\mathrm{i}} \mathbf{a}_{\mathrm{i}} / \Sigma \mathrm{m}_{\mathrm{i}}$
$\mathbf{P}=\Sigma \mathrm{m}_{\mathrm{i}} \mathbf{v}_{\mathrm{i}}$
$\Sigma \mathbf{F}_{\mathrm{EXT}}=\mathrm{M} \mathbf{A}_{\mathrm{CM}}=\mathrm{d} \mathbf{P} / \mathrm{dt}$

Impulse
 $\mathbf{I}=\int \mathbf{F} d t$
 $\Delta \mathbf{P}=\mathbf{F}_{\mathrm{av}} \Delta \mathrm{t}$

Collisions:

If $\Sigma \mathbf{F}_{\mathrm{EXT}}=0$ in some direction, then
$\mathbf{P}_{\text {before }}=\mathbf{P}_{\text {after }}$ in this direction:
$\Sigma \mathrm{m}_{\mathrm{i}} \mathbf{v}_{\mathrm{i}}($ before $)=\Sigma \mathrm{m}_{\mathrm{i}} \mathbf{v}_{\mathrm{i}}($ after $)$
In addition, if the collision is elastic:

* $\mathrm{E}_{\text {before }}=\mathrm{E}_{\text {after }}$
* Rate of approach $=$ Rate of recession
* The speed of an object in the

Center-of-Mass reference frame is unchanged by an elastic collision.

Rotational kinematics

$\mathrm{s}=\mathrm{R} \theta, \mathrm{v}=\mathrm{R} \omega, \mathrm{a}=\mathrm{R} \alpha$
$\left.\begin{array}{l}\theta=\theta_{0}+\omega_{0} t+1 / 2 \alpha t^{2} \\ \omega=\omega_{0}+\alpha t \\ \omega^{2}=\omega_{0}^{2}+2 \alpha \Delta \theta\end{array}\right\}$

Rotational Dynamics

$\mathrm{I}=\Sigma \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} 2$

$\mathrm{I}_{\text {parallel }}=\mathrm{I}_{\mathrm{CM}}+\mathrm{MD}^{2}$
$\mathrm{I}_{\text {disk }}=\mathrm{I}_{\text {cylinder }}=1 / 2 \mathrm{MR}^{2}$
$\mathrm{I}_{\text {hoop }}=\mathrm{MR}^{2}$
$\mathrm{I}_{\text {solid-sphere }}=2 / 5 \mathrm{MR}^{2}$
$\mathrm{I}_{\text {spherical-shell }}=2 / 3 \mathrm{MR}^{2}$
$\mathrm{I}_{\text {rod-cm }}=1 / 12 \mathrm{ML}^{2}$
$\mathrm{I}_{\text {rod-end }}=1 / 3 \mathrm{ML}^{2}$
$\tau=\mathrm{I} \alpha$ (rotation about a fixed axis)
$\tau=\mathrm{r} \times \mathrm{F},|\tau|=\mathrm{rFsin} \phi$

Work \& Energy

$\mathrm{K}_{\text {rotation }}=1 / 2 \mathrm{I} \omega^{2}$
$\mathrm{K}_{\text {translation }}=1 / 2 \mathrm{MVcm}^{2}$
$\mathrm{K}_{\text {total }}=\mathrm{K}_{\text {rotation }}+\mathrm{K}_{\text {translation }}$
$\mathrm{W}=\tau \theta$

Statics

$\Sigma \mathbf{F}=0, \Sigma \tau=0$ (about any axis)

> Angular Momentum
> $\mathbf{L}=\mathbf{r} \times \mathbf{p}$
> $\mathrm{L}_{\mathrm{z}}=\mathrm{I} \omega_{\mathrm{z}}$
> $\mathbf{L}_{\text {tot }}=\mathbf{L}_{\mathrm{CM}}+\mathbf{L}^{*}$
> $\tau_{\text {ext }}=\mathrm{d} \mathbf{L} / \mathrm{dt}$
> $\tau_{\mathrm{cm}}=\mathrm{d} \mathbf{L}^{*} / \mathrm{dt}$
> $\Omega_{\text {precession }}=\tau / \mathrm{L}$

Simple Harmonic Motion:

$\mathrm{d}^{2} \mathrm{x} / \mathrm{dt}^{2}=-\omega^{2} \mathrm{x}$
(differential equation for SHM)
$\mathrm{x}(\mathrm{t})=\mathrm{A} \cos (\omega \mathrm{t}+\phi)$
$v(t)=-\omega A \sin (\omega t+\phi)$
$a(t)=-\omega^{2} A \cos (\omega t+\phi)$
$\omega^{2}=\mathrm{k} / \mathrm{m}$ (mass on spring)
$\omega^{2}=\mathrm{g} / \mathrm{L}$ (simple pendulum)
$\omega^{2}=\mathrm{mgR}_{\mathrm{CM}} / \mathrm{I}$ (physical pendulum)
$\omega^{2}=\kappa / \mathrm{I}$ (torsion pendulum)

General harmonic transverse waves:

$\mathrm{y}(\mathrm{x}, \mathrm{t})=\mathrm{A} \cos (\mathrm{kx}-\omega \mathrm{t})$
$\mathrm{k}=2 \pi / \lambda, \omega=2 \pi \mathrm{f}=2 \pi / \mathrm{T}$
$\mathrm{v}=\lambda \mathrm{f}=\omega / \mathrm{k}$

Waves on a string:

$\mathrm{V}^{2}=\frac{F}{\mu}=\frac{(\text { tension })}{(\text { mass per unit length })}$
$\bar{P}=\frac{1}{2} \mu \nu \omega^{2} A^{2}$
$\frac{d \bar{E}}{d x}=\frac{1}{2} \mu \nu \omega^{2} A^{2}$
$\frac{d^{2} y}{d x}=\frac{1 d^{2} y}{v^{2} d t^{2}}$ Wave equation

Fluids:

$$
\rho=\frac{m}{V} \quad p=\frac{F}{A}
$$

$A_{1} v_{1}=A_{2} v_{2}$

$$
\begin{aligned}
& P_{1}+1 / 2 \rho v v_{1}^{2}+\rho g y_{1}= \\
& p 2+1 / 2 \rho v_{2}^{2}+\rho g y_{2}
\end{aligned}
$$

$\mathrm{F}_{\mathrm{B}}=\rho_{\text {liquid }} g V_{\text {liquid }}$
$F_{2}=F_{1} \frac{A_{2}}{A_{1}}$

Uncertainties:

$$
\delta=\frac{\sigma}{\sqrt{N}}
$$

$t^{\prime}=\frac{\left|\mu_{A}-\mu_{B}\right|}{\sqrt{\delta_{A^{2}}+\delta_{B^{2}}}}$

