Phys 211 Formula Sheet

Kinematics

 $\mathbf{v} = \mathbf{v}_0 + \mathbf{at}$ $\mathbf{r} = \mathbf{r}_0 + \mathbf{v}_0 \mathbf{t} + \mathbf{at}^2/2$ $\mathbf{v}^2 = \mathbf{v}_0^2 + 2\mathbf{a}(\mathbf{x} - \mathbf{x}_0)$

 $g=9.81\ m/s^2=32.2\ ft/s^2$

 $\boldsymbol{V}_{A,B} = \boldsymbol{V}_{A,C} + \boldsymbol{V}_{C,B}$

Uniform Circular Motion $a = v^2/r = \omega^2 r$ $v = \omega r$ $\omega = 2\pi/T = 2\pi f$

 $\label{eq:product} \begin{array}{l} \textit{Dynamics} \\ \textbf{F}_{net} = \textbf{ma} = d\textbf{p}/dt \\ \textbf{F}_{A,B} = \textbf{-F}_{B,A} \end{array}$

F = mg (near earth's surface)

 $F_{12} = -Gm_1m_2/r^2$ (in general) (where $G = 6.67x10^{-11} Nm^2/kg^2$)

 $F_{spring} = -k\Delta x$

Friction

 $f = \mu_k N \text{ (kinetic)}$ $f \le \mu_s N \text{ (static)}$

Work & Kinetic energy

 $W = \int \mathbf{F} \cdot \mathbf{d} \mathbf{l}$ W = $\mathbf{F} \cdot \Delta \mathbf{r} = F \Delta \mathbf{r} \cos \theta$ (constant force)

 $W_{grav} = -mg\Delta y$ $W_{spring} = -k(x_2^2 - x_1^2)/2$

$$\begin{split} K &= m v^2 / 2 = p^2 / 2m \\ W_{NET} &= \Delta K \end{split}$$

Potential Energy

$$\begin{split} U_{gray} &= mgy \text{ (near earth surface)} \\ U_{gray} &= -GMm/r \text{ (in general)} \\ U_{spring} &= kx^2/2 \\ \Delta E &= \Delta K + \Delta U = W_{nc} \end{split}$$

Power P = dW/dt $P = \mathbf{F} \cdot \mathbf{v}$ (for constant force)

System of Particles

$$\begin{split} \mathbf{R}_{CM} &= \Sigma m_i \mathbf{r}_i / \Sigma m_i \\ \mathbf{V}_{CM} &= \Sigma m_i \mathbf{v}_i / \Sigma m_i \\ \mathbf{A}_{CM} &= \Sigma m_i \mathbf{a}_i / \Sigma m_i \\ \mathbf{P} &= \Sigma m_i \mathbf{v}_i \\ \Sigma \mathbf{F}_{EXT} &= \mathbf{M} \mathbf{A}_{CM} = \mathbf{d} \mathbf{P} / dt \end{split}$$

Impulse $I = \int F dt$

 $\mathbf{I} = \mathbf{J} \mathbf{F} dt$ $\Delta \mathbf{P} = \mathbf{F}_{av} \Delta t$

Collisions:

If $\Sigma \mathbf{F}_{EXT} = 0$ in some direction, then $\mathbf{P}_{before} = \mathbf{P}_{after}$ in this direction: $\Sigma m_i \mathbf{v}_i$ (before) = $\Sigma m_i \mathbf{v}_i$ (after)

<u>In addition, if the collision is elastic:</u> * E_{before} = E_{after} * Rate of approach = Rate of recession * The speed of an object in the Center-of-Mass reference frame is unchanged by an elastic collision.

Rotational kinematics

s = R θ , v = R ω , a = R α $\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$ $\omega = \omega_0 + \alpha t$ $\omega^2 = \omega_0^2 + 2\alpha\Delta\theta$

Rotational Dynamics

$$\begin{split} I &= \Sigma m_i r_i 2 \\ I_{parallel} &= I_{CM} + MD^2 \\ I_{disk} &= I_{cylinder} = {}^1\!/_2 MR^2 \\ I_{hoop} &= MR^2 \\ I_{solid-sphere} &= {}^2\!/_5 MR^2 \\ I_{spherical-shell} &= {}^2\!/_3 MR^2 \\ I_{rod-end} &= {}^1\!/_3 ML^2 \\ \tau &= I\alpha \ (rotation \ about \ a \ fixed \ axis) \\ \tau &= r \ x \ F \ , |\tau| = rFsin\phi \end{split}$$

Work & Energy

$$\begin{split} K_{rotation} &= {}^{1}\!/_{2}I\omega^{2} \\ K_{translation} &= {}^{1}\!/_{2}MVcm^{2} \\ K_{total} &= K_{rotation} + K_{translation} \\ W &= \tau\theta \end{split}$$

Statics $\Sigma \mathbf{F} = 0$, $\Sigma \tau = 0$ (about any axis)

Angular Momentum

 $L = \mathbf{r} \times \mathbf{p}$ $L_z = I\omega_z$ $L_{tot} = \mathbf{L}_{CM} + \mathbf{L}^*$ $\tau_{ext} = d\mathbf{L}/dt$ $\tau_{cm} = d\mathbf{L}^*/dt$ $\Omega_{precession} = \tau / L$

Simple Harmonic Motion: $d^2x/dt^2 = -\omega^2 x$ (differential equation for SHM)

 $x(t) = A\cos(\omega t + \phi)$ $v(t) = -\omega A\sin(\omega t + \phi)$ $a(t) = -\omega^2 A\cos(\omega t + \phi)$

 $ω^2 = k/m$ (mass on spring) $ω^2 = g/L$ (simple pendulum) $ω^2 = mgR_{CM}/I$ (physical pendulum) $ω^2 = κ/I$ (torsion pendulum)

General harmonic transverse waves:

$$\begin{split} y(x,t) &= A\cos(kx - \omega t) \\ k &= 2\pi/\lambda, \ \omega &= 2\pi f = 2\pi/T \\ v &= \lambda f = \omega/k \end{split}$$

Waves on a string:

$$V^{2} = \frac{F}{\mu} = \frac{(tension)}{(mass \ per \ unit \ length)}$$

$$\bar{P} = \frac{1}{2} \ \mu \nu \omega^2 A^2$$

$$\frac{dE}{dx} = \frac{1}{2} \mu \nu \omega^2 A^2$$

 $\frac{d^2 y}{dx} = \frac{1 d^2 y}{v^2 dt^2}$ Wave equation

Fluids:

$$\rho = \frac{m}{V} \qquad p = \frac{F}{A}$$

$$A_1v_1 = A_2v_2$$

$$P_{1} + \frac{1}{2}\rho v_{1}^{2} + \rho g y_{1} = p_{2}^{2} + \frac{1}{2}\rho v_{2}^{2} + \rho g y_{2}^{2}$$

$$F_{\rm B} = \rho_{liquid} \, g V_{liquid}$$
$$F_2 = F_1 \frac{A_2}{A_1}$$

Uncertainties
$$\delta = \frac{\sigma}{\sqrt{N}}$$

$$t' = \frac{|\mu_A - \mu_B|}{\sqrt{\delta_{A^2} + \delta_{B^2}}}$$