Q1. Bernoulli Process and Poisson Process
Consider the following counting measurement.

The detector detected \(k \) counts during the measurement

Detector:
Covering 1% of solid angle,
Detection efficiency: \(\lambda = 55\% \)

mean(\(N \)) = \(m \)

1) Assuming the average (or mean) number of photons reaching the detector during the measurement is \(m \), should the number of photons reaching the detector, \(N \), follow Poisson distribution or binomial distribution? and please explain why.

2) If there is \(N \) photons reaching the detector, should the number of photons detected by the detector, \(k \), follow Poisson or Binomial distribution? and please explain why.

3) Please write down the probability of detecting \(k \) counts during the measurement.

Note:
Poisson distribution with mean of \(m \) is characterized by the following probability distribution function,

\[
P(N|m) = \frac{m^N}{N!} e^{-m}.
\]

Both the mean and variance (square of standard deviation) of the distribution is \(m \).

The binomial distribution is characterized by

\[
P_k = \binom{N}{k} p^k q^{N-k}.
\]
Q2: Error Propagation

In a typical counting measurement, the net count rate from a source is obtained by subtracting the background count rate $r_b = \frac{n_b}{t_b}$ from gross count rate $r_g = \frac{n_g}{t_g}$,

$$r_n = r_g - r_b = \frac{n_g}{t_g} - \frac{n_b}{t_b},$$

where n_b and n_g are measured background and gross counts, t_b and t_g are the time used in the gross and background counting measurements.

Please show that the standard deviation of the net count rate can be approximately given by

$$\sigma_{r_n} = \sqrt{\frac{n_g^2}{t_g^2} + \frac{n_b^2}{t_b^2}} = \sqrt{\frac{r_g^2}{t_g^2} + \frac{r_b^2}{t_b^2}}.$$
Q3: Detection Limits

(a) What is false positive (or type-I error), and what is false-negative (type-II error)?

(b) A sample, counted for 5 mins, registers 270 gross counts. A 20-min background reading gives 840 counts. What minimum number of gross counts can be used as a decision level such that the risk of making a type-I error is no greater than 0.1?

Hint:
1. The detected number of counts with a given time interval follows Gaussian distribution

\[p(n|\mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{(n - \mu)^2}{2\sigma^2} \right] \]

where \(\mu \) is the mean value of the distribution, and \(\sigma^2 = \mu \) is the standard deviation.

2. One-tail areas \(\alpha \) under the standard Gaussian distribution from \(z = k_\alpha \) to \(\infty \) are given in the table below.

<table>
<thead>
<tr>
<th>Area, (\alpha)</th>
<th>(k_\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.2500</td>
<td>0.675</td>
</tr>
<tr>
<td>0.1587</td>
<td>1.000</td>
</tr>
<tr>
<td>0.1000</td>
<td>1.282</td>
</tr>
<tr>
<td>0.0500</td>
<td>1.645</td>
</tr>
<tr>
<td>0.0250</td>
<td>1.960</td>
</tr>
<tr>
<td>0.0228</td>
<td>2.000</td>
</tr>
<tr>
<td>0.0100</td>
<td>2.326</td>
</tr>
<tr>
<td>0.0050</td>
<td>2.576</td>
</tr>
<tr>
<td>0.0013</td>
<td>3.000</td>
</tr>
<tr>
<td>0.0002</td>
<td>3.500</td>
</tr>
</tbody>
</table>