Fourier Transform and Sampling

Reading Material:

Chapter 2, Medical Imaging Signals and Systems, 2’'nd Edition,
by Prince and Links, Prentice Hall, 2006.
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Fourier Transform Basics
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" A
Continuous Fourier Transform

A Fourier Transform is an integral transform
that re-expresses a function in terms of
different sine waves of varying amplitudes,

wavelengths, and phases. Since this object can be made up of 3
fundamental frequencies an ideal Fourier
So what does this mean exactly? Transform would look something like this:

Let’ s start with an example...in 1-D

Increasing Frequency « » Increasing Frequency

Notice that it is symmetric around the
central point and that the amount of
points radiating outward correspond to
the distinct frequencies used in creating
the image.

When you let these three waves interfere with each
other you get your original wave function!
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" A
Fourier Transform — What and Why?

What is Fourier Transform?

* A function can be described by a summation of waves with
different frequency, amplitudes and phases.

The importance of Fourier Transform in Imaging?

e Signal representations in the frequency domain provide unique
information.

e Certain computations can be performed more efficiently in
frequency domain.

e Certain hardware naturally measures signals in the frequency
domain.
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" A
Continuous Fourier Transform

e For any square-integrable function f(x,y), a continuous Fourier
transform is defined as

F(u,v) = j j £ (x, y)e ) dxdy
where j =+/—1
e We can also define an inverse Fourier transform as

f(x,y)= I: foo F(u,v)e’ "™ dudy

e Both f(x,y) and F(u,v) have infinite support.
e Both f(x,y) and F(u,v) are defined on a continuum of values.

e f(x,y) and F(u,v) must contain the same information.
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Fourier Transform and Spatial Frequency

e Fourier transform can be viewed as a decomposition of the function
f(x,y) into a linear combination of complex exponentials with
strength F(u,v).

f(x,y)= I: foo F(u,v)e’ "™ dudy

e Fourier transform provides information on the sinusoidal
composition of a signal at different spatial frequencies.

ol 2 u+vy) Cos[272'(ux + vy)] + sin[27z(ux + vy)]

e F(u,v) is normally referred to as the spectrum of the function f(x,y).
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Fourier Transform and Spatial Frequency

transform
the
composition of a signal at different

Fourier provides

information on sinusoidal

spatial frequencies.
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What is Spatial Frequency?

f(x,y)= Ji .‘i F(u,v)e > dudy

e—j27r(ux+vy)

— cos[zyz(ux + vy)] + sin[27z(ux + vy)]
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" A
Point Impulse Signal

e A point source is mathematically represented by the delta
function or Dirac function.

#0, x=0and y=0

. 8(x,y)
=0, otherwise N

o(x, y){

and

[[, 6 yydvy =1 y // 4

e The sampling property

)= [ f&m-o(—& y—n)dén
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What is Spatial Frequency?

f(x,y)= Ji .‘i F(u,v)e > dudy

e—j27r(ux+vy)

— cos[zyz(ux + vy)] + sin[27z(ux + vy)]
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" A
An Example
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Decreasing high-frequency content
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Examples

Delta function X 1| ~ FFT /’ 2-D DC plane

2-D line impulse s FFT d ‘ 2-D line impulse

Y
)

Square signal 2-D sinc function
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"
Basic Fourier Transform Pairs

Signal Fourier Transform

1 S(u,v)

5(x,y) 1

8 (x — xq, y — J’O) e—jZn(ux0+vy0)

8s (x,y; Ax, Ay) comb(u#Ax, vAy)

ejZJT(qu—H/Oy) 5(% — Uy, UV — UO)

sin [27 (vox + voy)] —217 [6 (u —uo, v —vo) — 8 (u + up, v+ v9)]
cos [2m (uox + voy)] % 6 (u —ug, v —v9) + 6 (u+ up, v+ v9)]
rect(x,y) sinc(u, v)

sinc(x, y) rect(u,v)

comb(x, y) comb(u, v)

e'—n(xz +y2) e—]‘[(u2+1/2')
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Properties of Fourier Transform (1)

¢ I—inearity F[a1f(x9y)+a2g(x9y)]:alF[f(xay)]_l_azF[g(x’y)]

ol e i }F(w)

[ @

g(7) G(w)

e>

Fuv)=[ [ fGye ™ dxdy
where j = J-1

c> Flo)+
fay)={" [ Fuve " dudy Aryrg(®) ) G(0)

-~
t NS ~ o

NPRE 435, Principles of Imaging with lonizing Radiation, Fall 2021 Fourier Transform



" A
Magnitude and Phase

e In general, Fourier transform is a complex valued signal, even
if f(x,y) is real valued.

e |t is sometimes useful to consider the magnitude and phase
of the Fourier transform separately.

Fourier coefficients are complex: F(M, v) — FR (u, V) + ] . F[ (I/l, V)

Magnitude: ‘F(u, V)‘ = \/}71{2 (ua V) + F}z (u, V)

F; (u,v)
F,(u,v)

Phase: £ (u,v) = tan "

LF
An alternative representation: F(u, V) — ‘F(M, V)‘ej (u,v)

e The square of the magnitude |F(u,v)|? is referred to as the
power spectrum of the original function.
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" A
Triangular Signals and Gaussian Signals

e Triangular function:

iy = 1= for x|<L
21 L

=0 for ‘x‘>L

e Normalized Gaussian function: e SISO

Gp(x) = \/70_ 2o

1 _X +y2

G2D(x9y) —

2
27TO
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" A
Properties of Fourier Transform (2)

Shifting Property — Shift in spatial domain is equivalent to phase change
in spatial frequency domain.

5[f(x—x0,y—yo)]= cg’[f(u,v)]e_ﬂ”(”xo“’yo)

An example

A(x/16)A(y/16)

real and even

F(u,v)= f f £ (x, y)e 27 dxdy
where j = J-1
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"

Properties of Fourier Transform

Shown in Log scale

Real {F(u,v)}= 256 sinc%(16u)sinc?(16v)  Imag {F(u,v)}=0

‘F(u, v)‘ = \/{Real[F(u, v)]}2 + {Imag[F(u, v)]}2
=256 sinc’(16u)sinc’ (16v)

and

4 Imag[F(u,v)] 0

ZLF (u,v) = tan Real[F (u,v)]
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" A
Properties of Fourier Transform

‘F(u, V)‘ =

256 sinc’(16u)sinc”(16v)
and

ZF(u,v)=-2nu

Al(x=1)/16]A[y/16]
shifted by 1
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Properties of Fourier Transform

>-1_
Spatial Domain g
0_
X
A Gaussian transforms to a
Gaussian ™ i
21f :
g o
: . = B
Spatial Frequency Domain g 3
aof )

frequency

FLf (o =x0, = yy)| = FLf (v Je 27720
Spectral phase is zero

Magnitude is a Gaussian
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Properties of Fourier Transform

F[f(x — a)] = FIf(x)]exp(—j2mua)

1_
Spatial Domain - /\
_________ R, NE— )
Fu,v)=F, (u,v)+j-F; (u,v) i

Intensity
Phase

[F )| = F wv)+ F ()
L F (u, I
ZF(u,v) =tan % Propertles Spectrum (solid) and Spectral Phase (dashed)
241 1T o
F(u,v):‘F(u,v) e’ 21 -=" g
Spatial Frequency Domain T 0%
o[ .
frequency
Linear shifting in spatial domain
simply adds some linear phase to
the pulse Magnitude is unchanged
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" A
Properties of Fourier Transform

e Scaling F[f(ax,by)]zle(ﬁ Zj

9
a a b

An 1-D example
’

| o
Ao A

The shorter the pulse, the
broader the spectrum !

Fuv)=[ [ feeyle” " dxd

wherej =+/—1 A
. 2 7w(ux+vy) ‘ Z s [> .
f(x,y)= _EO J: F(u,v)e’ dudy - >
Spatial domain, f(x) Fourier Transform, F(u)
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Properties of Fourier Transform

e Scaling Flf(ax, by)]__bF( bj
a

An 2-D example

2-D Rect, 64 width 2-D Rect, 8 width

FT FT

Linear scale Log scale

2-D Rect, 64 width 2-D Rect, 8 width

-
i
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" A
Linear and Shift Invariant Systems Revisited

For a shift-invariant system, the output is the input convolved with
the impulse response function.

_°‘° F(Emh(x,y, & n)d&dn

= f (S, mh(x—¢&,y—n)dsdn
= f (x y)*h(x,y)

where /i(x, y,&,n7) is the response of the system to an delta impulse signal

g(x,y)
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" A
Convolution Theorem

e The convolution of two 2-D functions is defined as

feeh) = [ f(&mn)-h(x=Ey-n)dén

e The Fourier transform of the convolution is equal to the product of
the individual Fourier transforms:

T (x.3) #hix, )] = FLf ()] Flh(x, )]
where &||is the Fourier transform operator.

The output from a shift invariant system is therefore

g(x,y)= f(x, 1) *h(x,y) = F {F[f (x, )] F[h(x, )]}
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" A
Properties of Fourier Transform

e Product
Ff(x,y) gx,y)]=F|fx,y)]* F|gx,y)]

Fourier transform of the product of two functions equals to the
convolution of the Fourier transforms of individual function.

e The Convolution Theorem

Ff,y)xgx,y)|=F|fx, )] F|g(x,y)]
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" A
Convolution Theorem

Proof:
F[f(x,y)*g(x,y)] Assumingx' =x—¢andy' =y —n
= [ [ [ rEmge-Ey-mdE dn}e‘jz”(”“"” dx dy

-I.J O:Jf [ FE ) gx,y)- e e, dx'dy'}d§ dn
-] 4
— [fj:of_o:of(g,n).e—jZJr(u§+v77) dgdn][fjofj;g(xv’yv,e—j2:r(ux‘+vy') dX'dy']
=F[f(x,y)] F[g(x,y)]

f_O:O f_iof(g,n) . e_jzn(u§+vn) . g(X',y') . e—j2ﬂ(ux'+vy') dxvdyv}dg dn
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" A
F|f(x,y) gx,n]=F|fx.y)]*F|gx,y)]

Proof:
Note that

Fauy= " |7 £y = dxdy

Fe =" [ Fauve = dudy

The convolution theorem states :

F[ f(x,y)*g(x,y)| = F[ f(x, 0] Flg(x,y)]

Similarly we can prove that :

Ff ey ge] = FLFGem] F 2 e(x)]

If we define :

F=F[f(x)]G=F*[g(x.y)]. then f(x,y)=F[Flg(x,y)=F[G]
We can see that

F{FF]«F[G]}=F- G

Therefore

F|F-G|=F|F]+F|G]

Note that F and G are arbitrary function, so that

we can re - write the above equation as

F[ f(x,y) gCe,y)] = F| f(x,3)]=F|g(x,y)]



" A
Properties of Fourier Transform

e Separable product

"
Jx,y)=fi(x) £,(¥)

then

F, [ fan]=F[ (0] £[L)]
F(x,y)}=sinc(u)sinc(v)

flx,y)=Rect(x)Rect(y)
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" A
Symmetry Properties

Expanding the Fourier transform of a function, f(t):

o0

Flo) = j [Re{ £(£)} +iTm{£(1)}] [cos(ar)—isin(wn)] dt

—00 00

Expanding more, noting that: I O()dt=0 if O(t) is an odd function

= 0 if Re{f(t)} is odd =0 if Im{f(t)} is even

o0 o0

F(w) = j Re{f ()} cos(wt) dt + I Im{f(¢)} sin(awr) dt <« Re{F(w)}

T =0if Im{f(t)} is odd -0if Re{f(t)} is even
v j Im{ £ (£)} cos(wt) df —i j Re{ £(£)} sin(wf) dt «Im{F(@)
_ Even functions of w _ Odd functions of w
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" A
Fourier transform of Circularly
Symmetric Functions (1)

A function is circularly symmetric if

Jo(x,y) = f(x,y), foreveryd,
where f,(x,y)1s a rotated version of f(x,y).

In this case, the function

f(x, )= f(r), wherer =+/x* +

The Fourier transform is also real and circularly symmetric.

‘F(u,v)‘ =F(u,v)and ZF(u,v)=0

and

F(u,v)=F(q), where g =\Ju’ +v°
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" A
Fourier Transform of Circularly
Symmetric Functions (2)

The Fourier transform of a circularly symmetric function is called
Hankel transform

F(g)=2x[ f(r)J,Qmgr)rdr

where J, (7) 1s the zero - order Bessel function,

J (r)= 1 jo” cos(nr —rsing)dd, n=0,12,...,
T

The inverse Hankel transform is given by

fr)=2x[" F(g)J,(2mr)qd

sin(27zar) [1(q/ 2‘11)
" E@ . (a*~a)
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Properties of Fourier Transform (4)

e Parseval’ s Theorem

[ 1£ Gy dudv=[" " |F v dudv

Total energy of a signal of a signal f(x,y) in spatial domain equals its
total energy in spatial frequency domain.

Fourier transform and its inverse is energy preserving!
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" A
Convolution Theorem Revisited

The convolution theorem enables one to perform convolution
operation as multiplication process in spatial frequency domain.

) xh(x,y)= F7{F[f(x.y)] F[h(x.y)]}

By using the Fast Fourier Transform (FFT) algorithms, the convolution
operation can be performed very efficiently !! This provide a practical
way for modeling linear shift-invariant systems ...

g(x,y) = f(x,y)*h(x,y)

Input f System 4§ Output g
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" A
System Transfer Function

The Fourier transform of the impulse response function h is called the
system transfer function.

H(u,v)=F|h(x,y)] f f h(x, y)e_zm ) dy

—00 —00

Gu,v)=F(u,v)H(u,v)
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" A
System Transfer Function

G(u,v)=F(u,v)H (u,v)

An ideal low-pass filter is defined as

( 2 2
1 for\/u +v° <c

H(u,v) =+
0 for\/u2 +v: >

c is called the cut-off frequency.
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System Transfer Function

Ideal low-pass filter

Figure 2.12

The response of an ideal
low-pass filter for two values
of the cutoff frequency ¢

(c1 > c2).
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"

Spatial Frequency Revisited

Image Fourier Space
(log magnitude)
v Detail

Contrast
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Fourier Space
(log magnitude)
v Detail

Contrast

5% 10 % 20 % 50 %
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Sampling
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" A
What and Why?

Transformation from continuous signals into discrete signals is called
sampling. The sampled data can then be processed by digital
hardware.

f(x,y)= f(mAx,nAy), form,n=0,1,...

where Ax, Ay are called sampling intervals or sampling periods.

Pixel

? Slice
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Sampling in 1-D

Model £(x) l
® ) fi(x)

5. (x,Ax) !

The 1-D sampling function

5S(x,Ax)=25(x—n-Ax)

The sampled function

f,(x) = f(x)-6,(x,Ax) = f(nAx)5(x-nAx)

\HMTTW. — HMTWT.
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Fourier Transform of Sampled Function

E, () =F[£,(x)] = F5,(x.Ax) f(x)] comt(s)= St )

= comb(u- Ax)=F| f (x)] 25 x = mivx)
— J E O A)C(l/l _ i) - F(u) 55[55,()(,&)]: comb(u Ax)

n=-o L Ax 4

| = n Multiplication in one domain
= ol u——/|*F(u) becomes convolution in the

Ax “ Ax
n=—o other,

1

-— Y F(u--—)
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"
Point Impulse Signal

e The sampling property

[ rnse—y-nadsdy= f&n)

e The scaling property

1
by =1y o)

o(x,y)

= 09 otherwise

and

fw fw S(x,y)dxdy =1



Fourier Transform of Sampled Function

F[f0)] =— E F(u——)

n——oo

Prior to sampling, F(u) = F[f(X)]

I

After sampling, F(u)= F[ f (x)] l
s s —
/‘ center - to -~ center : ax

L w, ¢
< ax > e !

]
\

| |
L 1
Ax Ax
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" A
Fourier Transform of Sampled Function

If F(u) is band limited to u,, (cutoff frequency)
F(u) =0 for [u| > u.. F(x)

N

To avoid overlap (aliasing),

WA A=A

We would need 1 u, >u, and therefore 1 >2u,
Ax Ax
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" A
Rect Function

e Rect function:

rect(x) /¢ -’T X
, !
1 1 !
_J1, for |x| < —and |y| < —
rect(x, y) = : >
0, otherwise .
-172 0 12 X

e |t is normally used to pick up a particulate section of a given
function:

£ y)-rect (=2 27

Wx Wy
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Fourier Transform of Sampled Function

To avoid overlap (aliasing),
F, (u)

Ue 1, 1
Ax ¢ Ax
1 ]
We would need ——u,_ >u_ and therefore — > 2u_
Ax Ax

Joo= F [Fy,w- M4
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" A
Restoration of Original Signal
/ T Zu.c

FANSEEa e

Can we restore g(x) from the sampled frequency-domain signal? Yes,
using the Interpolation Filter

Hw) =11 — .

ﬁ Fourier transform

h(x) =2u,_ -sinc(2u_x)
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"
Restoration of Original Signal

The original function f can be recovered as
Jc(’k): %-‘[Fj, (w - ﬂ(ﬁ)}

()= £,(x)*h(x) H(u):n[ : ]

= f.(x)*[2u, - sinc(2u x)] A u,

. *T ¢

— Z f(n-Ax)-S(x—n-Ax) |*|2u, -sinc(2u x)] h(x) = 2u, -sinc(2u x)

n=—ao

_ i 2-u_ - f(n-Ax)-sinc(Qu (x —nAx))

n=—0

sinc(x)
f(x) is restored from a combination of
sinc functions, each weighted and
shifted according to its corresponding

sampling point. ’}MQ\/l | 1\/2/\3\/4/1.
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"
An Example

I’l=—OO

Original Signal Sampled Signal

300 " T " i T 30

200 [ 200 F

100 [ 100 +

=
13
K
o
’Q
.
+
0
.
. *
+

=100 o0 b

—200 [ 200 F

—-300 ' ' : ‘ ' 300
0

50 100 150 200 250 300 50 150 a0 =0 e

+
- +
g
-
.

=

Interpolated Signal Intermediate Step

300

200

sinc(x)
/ A

100

-100

-200

-300 : : : : :
0 50 100 150 200 250 300

Adding all vertical values gives back the original function
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" A
Nyquist Condition

Nyquist Theorem:

In order to restore the original function, the sampling rate must be
greater than twice the highest frequency component of the function.

Nyquist Sampling Interval:
The maximum sampling interval allowed without introduce aliasing is

NPRE 435, Principles of Imaging with lonizing Radiation, Fall 2021 Fourier Transform



Two Dimensional Sampling

fs(xay): f(xay)'5s(xayan9Ay)

; i f(xy)-0(x-nAx,y-mAy)

n=-oom=-oo

o0

— Z Zf(nAx,mAy)-S(x-nAx,y-WlAJ/)

n=-oom=-oo
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" A
Fourier Transform of Sampled Image

F, (u)=8f,(x,»)]

= 5[5, (x, v, Ax, Ay)- f(x, )]
= comb(u - AX, V- Ay)* é‘[f(X, J/)]

= ’io miio o Ax(u—;j Ay[v—%} *F(u,v)

Nn=—00 M=—00

1 N=00 mM=00

AxAy n;mzw5(u —— v—A—y)*F(u ,V)

The result: Replicated F(u,v), or “islands” every 1/ Ax in u, and 1/Ay in v.
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" A
Fourier Transform of a Sampled 2-D Function

VA

Fy(u,v)

aliasing
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" A
Consequence of Under-Sampling

VA

Fy(u, v)

>
u

aliasing

aliasing
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" A
Restoration of the Original 2-D Function

Interpolation Filter in 2-D

H(u,v) = H(qu)H(vAy)
g

| 1 .
h(x,y)=|—"—sinc(—) | — - sinc(—
(x, ) . (Ax) Ay (Ay)
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" A
Restoration of the Original 2-D Function

Given that the Nyquist sampling condition is met, the original function
can be recovered exactly.

F(x,y)=f,(x, ) *h(x,y)
:fs(x,y)*{Alx.sinC(Axx)}{ 1

sinc(2-
Ay smc(Ay)}

ngmiwf (nAx,mAy)-o(x—n-Ax,y—m-Ay) *{{Alx sing( )}{Aly-sinc(i;)}}

S~ x—-n-Ax_ . y—-m-Ay
— f(nAx,mAy)-sin -SINC
:Z ZAxAyf( ) - sIne( ™ ) - sinc( Ay )
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Fourier Transform of a Sampled 2-D Function

Harry Nyquist

Nyquist/Shannon Theory:
We must sample at twice the highest frequency in xand iny (U and V)
to reconstruct the original signal.
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From continuous to discrete Fourier

transform
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"

Fourier Transform and Spatial Frequency

e Vave

il [ 25 AKX

! WW@
LAWY

www.revisemri.com

-
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Fourier Transform and Spatial Frequency

A Fourier Transform is an integral transform
that re-expresses a function in terms of
different sine waves of varying amplitudes,

wavelengths, and phases. Since this object can be made up of 3
fundamental frequencies an ideal Fourier
So what does this mean exactly? Transform would look something like this:

Let’ s start with an example...in 1-D

Increasing Frequency « » Increasing Frequency

Notice that it is symmetric around the
central point and that the amount of
points radiating outward correspond to
the distinct frequencies used in creating
the image.

When you let these three waves interfere with each
other you get your original wave function!
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" A
System Transfer Function

G(u,v)=F(u,v)H (u,v)

An ideal low-pass filter is defined as

( 2 2
1 for\/u +v° <c

H(u,v) ==
0 for\/u2 +v: >

c is called the cut-off frequency.
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" A
System Transfer Function

-

Ideal low-pass filter Figure 2.12

The response of an ideal
low-pass filter for two values
of the cutoff frequency ¢

(c1 > c2).

y o0 : #
- -
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Fourier Transform of Sampled Function

E, () =F[£,(x)] = F5,(x.Ax) f(x)] comt(s)= St )

= comb(u- Ax)=F| f (x)] 25 x = mivx)
— J E O A)C(l/l _ i) - F(u) 55[55,()(,&)]: comb(u Ax)

n=-o L Ax 4

| = n Multiplication in one domain
= ol u——/|*F(u) becomes convolution in the

Ax “ Ax
n=—o other,

1

-— Y F(u--—)
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Fourier Transform of Sampled Function

To avoid overlap (aliasing),
F, (u)

Ue 1, 1
Ax ¢ Ax
1 ]
We would need ——u,_ >u_ and therefore — > 2u_
Ax Ax

Joo= F [Fy,w- M4
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Discrete Fourier Transform
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" A
Nyquist Condition - Revisited

Nyquist Theorem:

In order to restore the original function, the sampling rate must be
greater than twice the highest frequency component of the function.

For a continuous but band-width limited function, all “information
content” it contains can be preserved by a finite number of samples ...
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" A
Continuous Fourier Transform of
Sampled Function

F, (u)=8[/.(x)]=8[5,(x,Ax)- f(x)]

]l & n
“ar 2R

n=-—ao

Given that all “information content” of function f(x) is “carried” by a
finite number (N) of samples in the spatial domain, can we equally use
only N Fourier coefficients in spatial frequency domain to represent
the sampled function?
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" A
Discrete Fourier Transform in 1-D

In reality, most experimental data comes in as sampled function
defined on finite number of sampling points.

fn :f(nAX), forn:O,l,...,N-l

where Ax 1s the sampling interval

The discrete Fourier transform (DFT) provides a de-composition
of the sampled function with N spatial frequencies

U = k , N =—E,...,E
NAx 2 2
where Ax 1s the sampling interval

Note that there are really N+1 spatial frequencies here, but the two
extreme values will be identical.
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" A
Discrete Fourier Transform

In reality, most experimental data comes in as sampled function
defined on finite number of sampling points.

F[f,]=U,= [ f(x)e ™ dx = E F(kAx)e > ™ Ax

Jj2mnk _J2nnk

= AxNE_ f(kAx)e N = AxE fie

n

where Ax 1s the sampling interval and u, = , 1s a given spatial frenquency.

Note that U_ is periodic in n with a period N,

u, =U,_,.,n=12,..

n

So we normally let nin U, varying from 0 to N-1.
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" A
Discrete Fourier Transform in 1-D

The discrete Fourier transform (DFT) is defined as

_J2mk

N-1
F,=> fie ¥ ,n=012,.N-1
k=0

n = 0 corresponding to the DC component (spatial frenquency 1s zero)
n=1,...,N/2-1are corresponding to the positive frenquencies 0 <u <u_

n = N/2,...,N-1are corresponding to the negative frenquencies-u_ <u <0

The inverse DFT is defined as

1 Nl _J2mk

=—>»Fe " k=01,2,.N-1
fk Nn:O n
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Discrete Fourier Transform

The 1-D Discrete Fourier Transform (DFT) is defined as

N-1
E =) fiw™, n=0,122N-1

So calculating the DFT involves multiplication of a vector with a

k=0
j2r
with W=e "V
matrix

(F ) (11
F, 1 w!
F =Dt M E |=|1 w?
: 1 :
Fy, ) 1 w

It requires O(N?) complex operations!

WZ(.N—I)

LY A
WN—I fl
Wz(N—l) f2

- J \f N-1/J
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" A
Inverse Discrete Fourier Transform

The original spatial domain function can be recovered

j2r

N-1 j2z
/. =ZFkW_”k,O£n£N—lansze N
k=0

So calculating the DFT involves multiplication of a vector with a

matrix
(£ (1 1 1 1 1\ F, )
B ﬂ 1 W—l W—2 . W—(N—l) E
f=DF M fHol=l1 o wr o owt s w R
: 1 : : -, : :
1 W—(N—l) W—2(N—1) W—(N—1)2 E
Syva) \ I\ N-1/
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" A
Fast Fourier Transform

In fact, the DFT can be calculated using the Fast Fourier
Transform (FFT) algorithm ...

_J2mk

N-1
F,=> fie ¥ ,n=012,.,N-1
k=0

N-1 _J2mk
_ N
Fn R kae
k=0
N/2-1 _j2m(2k) N/2-1 _J2m(2k+1)
_ N N
= Z e St Z € Jora
k=0 k=0
N/2-1 _j2mk N/2-1 _Jj2mk 2
_ N/2 n N/2 v
= Ze Jou W Ze Sk W=el
k=0 k=0

=F'+W"F°,  n=0]12,.,N-1
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" A
Fast Fourier Transform

The wonderful thing about the previous results is that it can be
used recursively ... so that ...

igﬁﬁrff 01234567809 1011 12 13 14 15
A
2 signals of - ; E— .
8 pounts 02468101214 |[135 79 111315
.'I II'I. II,'I l'.l.
4 signals of F A i r o ;
4 points 0 48 12][261014|[1 50 13|][37 1115
$ cionals of v U ;o J
pomts 10 8][412][210][6 14][1 o [513][3 11][7 15
U TR B2 A R B S B B
1 point o|[s|[4][e2][21[1o|[s | fia][ 1 |[o][5][3][ 3][11][7] 15
FIGURE 12-2

The FFT decomposition. An N point signal 1s decomposed into NV signals each containing a single point.
Each stage uses an inferlace decomposition, separating the even and odd numbered samples.

http://www.dspguide.com/ch12/2.htm
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" A
Discrete Fourier Transform in 1-D

The discrete Fourier transform (DFT) is defined as

_J2mk

N-1
F,=> fie ¥ ,n=012,.N-1
k=0

n = 0 corresponding to the DC component (spatial frenquency 1s zero)
n=1,...,N/2-1are corresponding to the positive frenquencies 0 <u <u_

n = N/2,...,N-1are corresponding to the negative frenquencies-u_ <u <0

The inverse DFT is defined as

1 Nl _J2mk

=—>»Fe " k=01,2,.N-1
fk Nn:O n
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" A
Fast Fourier Transform

Number of operations are needed for an 1-D Discrete Fourier
Transform (DFT) of N points:

F

n

]
Rt
3

b X N complex multiplications and N*(N-1) complex additions! J

Number of operations are needed for an 1-D Discrete FFT of N
points:

N/2 X (log,N-1) ~ N/2 X log,N complex multiplications and N X
log,N complex additions!

NxNVN —> N/z-PyzN
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" A
Fast Fourier Transform

For an 1-D Discrete Fourier Transform of 1024 points:

DFT: ~1048576 ( X ) and 1047552 (+)
Versus

FFT: 5120 ( X ) and 10240 (+)

For convolution operation:

g(x,y) = f(x, ) *h(x,y) = F {F[f (x, )] Flg(x, »]}

Direct: ~1048576 ( X )
Versus A factor of ~600 difference!

FFT: ~5120 X3 (X)
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" A
Properties of Discrete Fourier Transform

Linearity
if f(n)< F(m)and g(n) < G(m)
then af (x)+bg(x) < aF(u)+bG(u)
Shifting
_ingkm
DFT|f(n—k)|= DFT[F(m)le ¥
Example : if k=1 there is a 27 shift as

m varies from 0 to N-1
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" A
Discrete Fourier Transform in 2-D

2-D DFT is defined as

M—-1N-1 j2mk  j2mml

F(n,m)= f.(k,De N oe M|

[=0 k=0

2

=
Il

where

J (k1) = f(kAx,[Ay)
n=01,2,..N-landm=0,1,2,..M -1

Similar to the continuous case,

F(n,m)=FFT on Index 1 (FFT on Index 2[ £ (k,1)])
= FFT on Index 2 (FFT on Index 1[ f(k,1)])
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Discrete Inverse Fourier Transform in 2-D

2-D inverse DFT is defined as

where

fi(n,m) = f(nAx,mAy)
n=0,1,2,.N-landm=0,1,2,..M -1
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" A
Review of Key Concepts (1)

Continuous Fourier Transform

e For any square-integrable function f(x,y), a continuous Fourier
transform is defined as

F(u,v)= j‘” r F(x, )e 2@ Gy
where | =-1

e \We can also define a inverse Fourier transform as

f(x, y) — ,[jo jjowF(u,v)QJZE(ux+vy)dudv
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Review of Key Concepts (1)
Spatial Frequency

Spatial frequency is a characteristic of any structure that is periodic

across position in space. It is a measure of how often the structure

repeats per unit of distance.

f(x,y)= J.: J-: F(u,v)e *"“™ dudy

e—j27z(ux+vy)

— cos[27z(ux + vy)] + sin[27z(ux + vy)]

-—
in|Ale2ATE A12.0 + 2ATEALED + By T8 )T7.0
-~ o nia

LD profile

»n \-lfl J—
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" A
Review of Key Concepts (3)
Convolution Theorem

FLf(x,p)-gx, »)|=Ff(x, )]« Flg(x, )]

—_—

— =

FIf(x,p)*g(x,p)|=Ff(x,p)] Flg(x.»)]
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" A
Review of Key Concepts (4)

Two Dimensional Sampling
fs(xay):f(xay)'gs(xayanaAy)

i i f(xy)-0(x-nAx,y-mAy)

n=-oom=-oo

o0

— Z Zf(nAx,mAy)-S(x-nAx,y-MAJ/)

n=-oom=-oo
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" A
Fourier Transform of Sampled Image

F, (u)=8f,(x,»)]

= 5[5, (x, v, Ax, Ay)- f(x, )]
= comb(u - AX, V- Ay)* é‘[f(X, J/)]

= ’io miio o Ax(u—;j Ay[v—Aﬂyj *F(u,v)

Nn=—00 M=—00

N=00 mM=00

1 E S
AxAy ngomzw5(u—— v—A—y) F(u,v)

AxAy,,,Z_OOF(u__ v——)

The result: Replicated F(u,v), or “islands” every 1/ Ax in u, and 1/Ay in v.
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" A
Review of Key Concepts (5)
Two Dimensional Sampling

Nyquist/Shannon Theory:
We must sample at twice the highest frequency in xand iny (U and V)
to reconstruct the original signal.
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Two Dimensional Sampling

Nyquist Theorem:

In order to restore the original function, the sampling rate must be
greater than twice the highest frequency component of the function.

Nyquist Sampling Interval:
The maximum sampling interval allowed without introduce aliasing is
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" A
Example — Fourier Transform of a
Continuous Function

aliasing

(b)

Aliasing due to insufficient sampling
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"
Review of Key Concepts (6)
Discrete Fourier Transform

The discrete Fourier transform (DFT) is defined as

_J2mk

N-1
F,=> fie ¥ ,n=012,.N-1
k=0

n = 0 corresponding to the DC component (spatial frenquency 1s zero)
n=1,...,N/2-1are corresponding to the positive frenquencies 0 <u <u_

n = N/2,...,N-1are corresponding to the negative frenquencies-u_ <u <0

And the inverse DFT is defined as

1 Nl _J2mk

=—>»Fe " k=01,2,.N-1
fk Nn:O n
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"
Review of Key Concepts (6)
Fast Fourier Transform

Number of operations are needed for an 1-D Discrete Fourier
Transform (DFT) of N points:

N X N complex multiplications and N*(N-1) complex additions!

Number of operations are needed for an 1-D Discrete FFT of N
points:

N/2 X (log,N-1) ~ N/2 X log,N complex multiplications and N X
log,N complex additions!
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