4CeeD Lecture Series

Lecture #4:

SENSELET: Sensory Network Infrastructure for Scientific Lab Environments March 30th, 2023

Robert Kaufman (rbkaufm2@Illinois.edu), Leah Espenhahn (leahe2@illinois.edu), Beitong Tian (beitong2@illinois.edu), Prof. Klara Nahrstedt (Klara@Illinois.edu)

A timely and trusted curator and coordinator of scientific data

Lecture Series Learning Objectives

- Lecture 1 (3/21): Overview of 4CeeD
- Lecture 2 (3/23): Workshop (Cont.) & Advanced Features
- Lecture 3 (3/28): 4CeeD Backend Services
- Lecture 4 (3/30): SENSELET
 - Background & Motivation
 - SENSELET Architecture
 - Components of SENSELET
 - Live Demo of SENSELET Visualization

Recap of 4CeeD

 Address Scientific Digital Data Acquisition, Curation and Sharing prior to Scientific Publication of Results via Private Cloud Storage Facility

Recap of 4CeeD

 Address Scientific Digital Data Acquisition, Curation and Sharing prior to Scientific Publication of Results via Private Cloud Storage Facility

Outline

- Background & Motivation
- SENSELET Architecture
- Components of SENSELET
- Live Demo of SENSELET Visualization

Outline

- Background & Motivation
- SENSELET Architecture
- Components of SENSELET
- Live Demo of SENSELET Visualization

Digitizing the Research Laboratory

- University equipment is utilized well-beyond its expected lifetime
- Many do not offer means for digitalizing feedback data during experiments

25+ year old Plasma Deposition

SENSELET Consequences of Uncontrolled Environments

- Excess humidity in un-controlled and un-monitored environments can lead to failure modes
 - Photoresist delamination
 - Critical dimension (CD) fluctuation [1]
 - Photoresist thickness variation [1]

Fig. 1 Comparison between an optical microscope image of developed photoresist that form sharp waveguides (left) and photoresist showing delamination caused by excess humidity of the cleanroom (right).

SENSELET Automatic Data Logging of Lab Environments

- Real-time environmental data logging is time-consuming when conducted manually
 - Large-scale commercial sensor networks are expensive
 - Implement variety of sensors on lab equipment (ex. furnaces)

Monitoring of long duration experiments:

- Diffusion
- Oxidation
- Annealing

Monitoring Sensors:

- Gas flow sensors
- Temperature sensors

SENSELET Environmental Logging: Chemical Fume Hood

• Automatically log/track humidity, temperature, gas flows, and others

- Temperature/Humidity Sensor: real-time tracking to ensure optimal performance during lithography processes
- Air Flow Sensor: Threshold tracking to notify cleanroom users for out-ofspec performance
 - Eliminates downtime of the fume hood if it doesn't pass safety audit inspection

SENSELET Environmental Logging: Furnaces/Gasses

- Gas Flow Sensor: real-time tracking of oxidation experiment or determining the remaining amount of gas
- **Temperature Sensor:** real-time tracking of sensitive oxidation, annealing, or diffusion processes
 - Aids in troubleshooting or guaranteeing reliability of long experiments (2-3 hours)

Outline

- Background & Motivation
- SENSELET Architecture
- Components of SENSELET
- Live Demo of SENSELET Visualization

 A system of wireless, automated sensors that monitor the cleanroom environment, together with the central server which manages the sensory data

 A system of wireless, automated sensors that monitor the cleanroom environment, together with the central server which manages the sensory data

 A system of wireless, automated sensors that monitor the cleanroom environment, together with the central server which manages the sensory data

SENSELET in Lithography Room

Outline

- Background & Motivation
- SENSELET Architecture
- Components of SENSELET
- Live Demo of SENSELET Visualization

 A system of wireless, automated sensors that monitor the cleanroom environment, together with the central server which manages the sensory data

SENSELET SenseEdge Functions

Functions of SenseEdge:

- Track temperature, humidity, (water leakage, air flow, door status etc.)
- Send data to central cloud server
- Recover from failures

SENSELET SenseEdge – Structure

• Temperature and Humidity Sensor

- Humidity Range: 0 ... 100% RH
- Humidity Accuracy: ±1.5 %RH
- Temperature Range: -40 ... 105 °C
- Temperature Accuracy: ±0.1 °C (20 to 50 °C)

• Infrared Temperature sensor (Pump)

- Temperature Range: -70 ... 380 °C
- Temperature Accuracy: ±0.5 °C

Water Leakage Sensor Rope

• Water Leakage Sensor Point

• Magnetic Sensor Large

• Magnetic Sensor Small

• Air Flow Sensor

Clogged Filter Detection

SENSELET SenseEdge – Structure

SENSELET SenseEdge – Edge Device

• Edge Device

- Raspberry Pi --- "small singleboard computers"
- Originally designed to "promote teaching of basic computer science"
- "now widely used even in research projects"
- Wi-Fi, Bluetooth, Ethernet, USB, Micro HDMI, GPIO header pins, CSI interface

SENSELET SenseEdge - Deployment

37

 A system of wireless, automated sensors that monitor the cleanroom environment, together with the central server which manages the sensory data

SENSELET SENSECLOUD

• Time series database

SENSELET SENSECLOUD

• Time series database

FOR

neor (Senselet) Version 2

SENSELET SENSECLOUD

Relational Database (MySQL)	Time Series Database (InfluxDB)	
General purpose	Optimized for time series data (storage, query)	
Max ingest rate 155k writes/sec (on AWS)	Easily supports ingest rate of 1M writes/sec	
Keys are usually item IDs	Keys are time stamps	

SENSELET SENSECLOUD Database Storage

	name: temp_humi_measurement Field keys		Tag	Field keys
	time 2020-03-02T06:04:12Z 2020-03-02T06:04:12Z 2020-03-02T06:04:13Z 2020-03-02T06:04:13Z	humidity 47.112030029296875 32.982391357421875 47.119659423828125 32.982391357421875	sensor 0 2 0 2 2 7	temperature 21.60829833984375 27.324775390625 21.586848144531253 27.335500488281248
Timestamp	2020-03-02T06:04:14Z	32.997650146484375	2	27.346225585937496
InfluxDB time series database	2020-03-02106:04:142 2020-03-02T06:04:152 2020-03-02T06:04:152 2020-03-02T06:04:152 2020-03-02T06:04:152 2020-03-02T06:04:172 2020-03-02T06:04:172 2020-03-02T06:04:172 2020-03-02T06:04:182 2020-03-02T06:04:182 2020-03-02T06:04:192 2020-03-02T06:04:192	4/.104400634/65625 32.997650146484375 47.119659423828125 45.5 47.104400634765625 50.4 47.112030029296875 32.974761962890625 47.127288818359375 32.997650146484375 47.127288818359375 32.982391357421875 45.5	U 2 0 6 0 7 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	21.619023437499997 27.31405029296875 21.640473632812494 21.3 21.60829833984375 19.7 21.60829833984375 27.324775390625 21.5975732421875 27.346225585937496 21.60829833984375 27.335500488281248 21.3
	2020-03-02100:04:202 2020-03-02106:04:20Z 2020-03-02106:04:21Z 2020-03-02106:04:21Z	47.104400634765625 32.990020751953125 47.119659423828125	2 0 2 0 7	21.5975732421875 27.346225585937496 21.60829833984375

SENSELET SENSECLOUD Database Storage

• InfluxDB uses InfluxQL, an SQL-like query language to interact with data in the database.

SELECT "humidity" FROM "temp_humi_measurement" WHERE ("sensor" = '19-00000003f4ee') AND time >= now() - 15m

 A system of wireless, automated sensors that monitor the cleanroom environment, together with the central server which manages the sensory data

SENSELET Visualization & Alert

- Grafana: An open-source visualization tool
- Customize dashboards
- Monitor real-time or historical time series data, do simple analytics
- Can send alerts

SENSELET SENSELET Visualization & Alert

SENSELET SENSELET Visualization & Alert

Types of anomaly:

- Critical Anomalies:
 - Fire; Water leakage
- Non-critical Anomalies:
 - Interesting patterns

SENSELET SENSELET Visualization & Alert

SENSELET Summary

Outline

- Background & Motivation
- SENSELET Architecture
- Components of SENSELET
- Live Demo of SENSELET Visualization

SENSELET **Demo**

- Introduction to Grafana web interface
- How to visualize sensory data of specific time range
- How to set an alert (If we have time)
- Try it yourself!