

4CeeD Backend Services

4CeeD Backend Services

Robert Kaufman (<u>rbkaufm2@Illinois.edu</u>), Leah Espenhahn (leahe2@illinois.edu), Beitong Tian (beitong2@illinois.edu), **Prof. Klara Nahrstedt (klara@illinois.edu)**

A timely and trusted curator and coordinator of scientific data

Outline

- 4CeeD Distributed Architecture, Backend Cloud Concepts and Services
 - What is 4Ceed and its goals
 - What is behind the 4CeeD Dashboard
 - 4CeeD Cloud Design and Deployment
 - How to deal with Aging Scientific Instrument

What is 4CeeD and its goals?

 Address Scientific Digital Data Acquisition, Curation and Sharing prior to Scientific Publication of Results via Private Cloud Storage Facility

Instrument (in MRL/HMNTL/BI)

		Experimental setting: Time 13min Temp 425 C		ed meta data)
10.0kV 7.5mm x9.00k	500un	Notes: Oxidation depth is about	12um.	
Result image of 07302013-Oxidation experiment		Oxidation layer composed of Al(0.98)GaAs with thickness of 30 nm. Furnace in 2111 MNT L, 2" diameter quartz.		(Free text)

LINOIS

3

Sample output data from SEM microscopy

How this looks from 4CeeD [Datasets]

L Patrick Su / Sample 1

Space containing the Dataset

IILLINOIS

4

	_ Etching Experir	Sel	lect a Space	- + ADD		
Created by Patrick S	All Rights Reserved Patrick Su		Col	Collections containing the Dataset		
Access: Space De Public	o19 efault (Private) 🔘 Private			GaAs Etching Develo	opment	
Result image of 0702	22019-ICP-RIE Etching Experiment	G				
			Se	lect a collection	ADD	
🕂 Add Files 🛃 Download All Files 📾 Delete			Тад	Tags		
Files Metada	ata Comments (0)				N TAG	
	VCSEL GaAs Etch Sa image/tiff Jul 02, 2019 1.2 MB No ≣ 0 ₱ 0	mple 4CeeD.tif ≛ Do ★Fo	wnload Iow			

 4CeeD is designed to present only pertinent information for quick understanding of the experiment

Scenario with 4CeeD Integration

IILLINOIS

Outline

- 4CeeD Distributed Architecture, Backend Cloud Concepts and Services
 - What is 4Ceed and its goals
 - What is behind the 4CeeD Dashboard
 - 4CeeD Cloud Design and Deployment
 - How to deal with Aging Scientific Instrument

Increasingly data-driven and interdisciplinary scientific research in Physical Sciences and Live Sciences

Key enabling factor: Network connected scientific instruments capable of real-time data capture

Digital microscope

IILLINOIS7

4CeeD Design Considerations - Distributed View

4Ceed Design Considerations – Component View

4CeeD Design Considerations - Multimodal data format View

Result image of 07302013-Oxidation experiment

Experimental setting:

Time 13min Temp 425 C

Notes:

Oxidation depth is about 12um. Oxidation layer composed of Al(0.98)GaAs with thickness of 30 nm. Furnace in 2111 MNT L, 2" diameter quartz.

(Structured meta data)

A lot of useful information is hidden in unstructured text

(Free text)

Example of multimodal experimental

FOLDER

FLES

Heterogeneity of experimental data (Spaces, Collections

Datasets)

4CeeD Design Considerations - long-tail scientific data

- Related efforts mainly focus on *homogenous, well-organized data* in an offline or batch manner
- Much less effort has been on *long-tail scientific data*:
 - Small/medium sized data sets collected during day-to-day research
 - "Dark data", e.g., unpublished data of failed experiments

LINOIS

4CeeD Design Considerations - Long-tail scientific data processing challenges

Challenges: Support execution of heterogeneous types of data processing & analysis workflows

Raw data

- Previous work often employs a monolithic approach in workflow implementation and execution
 - E.g.: Pegasus, Taverna, Kepler, etc.
 - Run on large-scale & homogeneous datasets

Executing workflows on grid infrastructure

INOIS

4CeeD Design Considerations – Task Workflows

- Application is a Computational Workflow
- Workflow is Set of Tasks (e.g., A, B, C, D) executing over materials data
- 1. Example of a Task C: "Plotting a graph"

In [5]: metadata = py4ceed.get_metadeta()
 metadata.plot(x='Pressure', y='Etch_Rate')
 plt.show()

2. Example of a Task D: "Filter Data"

In [6]: metadata[metadata ['Pressure'] >=7]

• Other examples of tasks: Extraction of features from an image, compression of image, ...

INOIS

Summary of 4CeeD Design Challenges

- Heterogeneous scientific data management and processing
- Support ad hoc and complex data analysis \geq workflows
- Shorten time from digital capture to interpretation & insights

Real-time data capture and acquisition

Analytics support to gain insights from data

Outline

- 4CeeD Distributed Architecture, Backend Cloud Concepts and Services
 - What is 4Ceed and its goals
 - What is behind the 4CeeD Dashboard
 - 4CeeD Cloud Design and Deployment
 - How to deal with Aging Scientific Instrument

4CeeD Cloud Design

✓ Micro-service execution environment

✓ Data Management

Cloud Computing Concept

Figure Source: Wikipedia

ILLINOIS 17

Cloud Computing Concept

4CeeD Cloud

ILLINOIS ¹⁸

Private and Public Clouds

19

IILLINOIS

Figure Source: Wikipedia

Example of Cloud Components

Figure Source: Wikipedia

ILLINOIS 20

4CeeD Cloud Components

ILLINOIS

Hardware Virtualization

- Two types of hardware virtualization
 - Emulation-based virtualization
 - Container-based virtualization

Container

- Container Software Unit that bundles its own software, libraries and configuration files
 - Containers are isolated from one another and can communicate with each other through well-defined channels.
 - All containers are run by a single operating system kernel and therefore use fewer resources than virtual machines.
 - Virtual Container, called Docker, is professional software package developed by *Docker Inc*. as part of PaaS.

Source: Wikipedia

Micro-Service

- Microservice
 - a software development technique (a variant of the service-oriented architecture (SOA) structural style)
 - an application is arranged via microservices as a collection of loosely coupled services.
- In a microservices architecture, services are <u>fine-grained</u> and the protocols are <u>lightweight</u>.

4CeeD Cloud Architecture Components – Putting it Together

ILLINOIS 25

4CeeD Cloud Design

✓ Cloud Concept

✓ Micro-service execution environment

✓ Data Management

In Cloud - Micro-service execution environment

- *Micro-services over monoliths*: Each task is modeled as a micro-service
 - Use publish-subscribe middleware to connect between microservices

• Separate task dependencies from task implementation & deployment

INOIS

- Enable flexible workflow composition
- Task-level resource provisioning

4CeeD Executing scientific data processing workflow

LLINOIS

4CeeD Cloud Design

✓ Micro-service execution environment

✓ Data Management

4CeeD Data Management and Storage

- 4CeeD uses NoSQL database to store <u>spaces</u>, collection and <u>dataset</u> metadata and some data
- MongoDB is open-source NoSQL database
 - Non-relational database (NoSQL), i.e., data storage and retrieval are not organized in tabular relations
 - Developed due to the limits of relational databases and their scalability to very large datasets (scale was limited because of the requirement for consistency in relational databases)
 - 4 models of NoSQL
 - key-value stores,
 - graph stores,
 - column stores,
 - document stores

4CeeD-Clowder Data Management and Storage (2)

- Document Store Model
 - Store data in semi-structured form, called documents
 - Documents encoded in standardized format such as
 - XML format
 - Javascript Object Notation (JSON)
- Example of Document store database

Source: P. Bajcsy et al. "Web Microanalysis Of Big Image Data", Spring, 2018

4CeeD Data Management and Storage (3)

- 4CeeD uses MongoDB
- In MongoDB
 - Documents are stored in a JSONlike format
- Example of JSON-like Format
- 4CeeD Data Model organizes projects into collections, datasets, and files.
- These can then be shared in spaces.
 4CeeD utilizes and modifies NCSA
 Clowder data management system.

```
{ "first name": "John",
"last name": "Smith",
"age": 25,
"address": {
   "street address": "21
2nd Street",
   "city": "New York",
   "state": "NY",
   "postal code": "10021"
  },
"phone numbers":[
  ł
    "type": "home",
    "number": "212 555-
1234"
  },
  "type": "fax",
  "number": "646 555-4567"
1,
  "sex":
    "type": "male"
               Source: wikipedia
```


ILLINOIS 32

4CeeD Smart Data Management

Collection: T2CB; **Datasets**: PlasmaEtching,, Metalization **Folders:** Calibration, SEM, Optical Microscopy..., **Files**: txt files, tiff files, ...

4CeeD Deployment – Cloud Production System

4CeeD Cloud

Goals:

- Redundancy
- Availability
- Scalability

Storage Layer:

- 40 TB (20 TB per investor)
- Replicated for redundancy

Compute Layer:

- **Docker container** orchestration (Kubernetes)
- Single master (High Available masters in future)

INOIS

4CeeD Micro-service implementation system (in Compute Layer)

eeD

ILLINOIS 35

Outline

- 4CeeD Distributed Architecture, Backend Cloud Concepts and Services
 - What is 4Ceed and its goals
 - What is behind the 4CeeD Dashboard
 - 4CeeD Cloud Design and Deployment
 - How to deal with Aging Scientific Instrument

Current situation in campus cyberinfrastructure

IILLINOIS

Challenges of connecting offline older instruments

 Performance mismatch: Older instruments' Windows NT or XP runs network protocols at lower bandwidth speeds (10Mbps or 100Mbps)

 Obsolete security: Older devices and their OS systems cannot be patched, hence being vulnerable & taken offline

BRACELET: Putting edge device between older instruments and private cloud

Performance:

- Have two network interfaces configured at different speeds
- Traffic shaping & offloading between edges & cloud

Security:

- · User & instrument registration
- Data encryption during upload
- Firewall to protect against external threats

BRACELET Design

Edge Server

- Security service
 - Check equipment address
 - Authenticate user and his reservation
- Compute/Transport service
 - Forward and upload data

Cloud

- Compute/Data service
 - Compute tasks/workload
 - Store/Retrieve metadata, data

Security service

Authenticate user, access control

User authentication from instruments via BRACELET

LLINOIS

Transport service between edge & cloud

- After processing request, the task consumer forwards request to the next task (following current placement)
 - After learning about the placement, data processing request is sent to the first task
- 4CeeD Uploader communicates with local Edge controller to learn about where to send request to
- Edge controller periodically communicates with cloud controller to update task placements

LLINOIS

BRACELET Deployment

BRACELET Network Architecture

ILLINOIS 43

4CeeD Summary

- Lightweight microservice cloud architecture for materials genomic challenge
- Real-time cloud service for.
 - Curation Service
 - Data Analysis (Jupyter Notebook)
- Smart data management system for materials data

- Novel usage of edge computing for aging IoT devices to enable security
- Sources (code and project description):
- https://4ceed.github.io/
- http://t2c2.csl.illinois.edu/

Publications

- Phuong Nguyen, Steven Konstanty, Todd Nicholson, Thomas O'Brien, Aaron Schwartz-Duval, Timothy Spila, Klara Nahrstedt, Roy Campbell, Indranil Gupta, Michael Chan, Kenton McHenry and Normand Paquin, "4CeeD: Real-Time Data Acquisition and Analysis Framework for Material-related Cyber-Physical Environments", IEEE/ACM 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Madrid, Spain, May 14-17, 2017– Best Paper Award
- Phuong Nguyen, Klara Nahrstedt, "MONAD: Self-adaptive Micro-service Infrastructure for Heterogeneous Scientific Workflows", 14th IEEE International Conference on Autonomous Computing (ICAC 2017), July 17-21, 2017, Columbus, Ohio
- Zhe Yang, Phuong Nguyen, Haiming Jin, Klara Nahrstedt, "MIRAS: Model-based Reinforcement Learning for Microservice Resource Allocation over Scientific Workflows", IEEE International Conference on Distributed Computing Systems (ICDCS 2019), July 2019, Dallas, TX; DOI: 10.1109/ICDCS.2019.00021
- Phuong Nguyen, Tarek Elgamal, Steve Konstanty, Todd Nicholson, Stuart Turner, Patrick Su, Michael Chan, Klara Nahrstedt, Tim Spila, Kenton McHenry, John Dallesasse, Roy Campbell, "Bracelet: Edge-Cloud Microservice Infrastructure for Aging Scientific Instruments", IEEE International Conference on Computing, Networking, and Communications (ICNC) 2019, Hawaii, February 2019.

