

4CeeD Lecture Series

Lecture #1: Introduction and Overview March 21st, 2023 Use of 4CeeD Services for Material Scientists

Leah Espenhahn (leahe2@Illinois.edu), Robert Kaufman (rbkaufm2@Illinois.edu)

Beitong Tian (beitong2@illinois.edu), and Klara Nahrstedt (klara@illinois.edu)

A timely and trusted curator and coordinator of scientific data

Lecture Series Learning Objectives

- Lecture 1 (3/21): Overview of 4CeeD
 - Introduction to 4CeeD
 - Breakout Session #1: Log-In and Explore
 - Key 4CeeD Features: Templates for Fast Storage
 - Breakout Session #2: Creating and Using Templates
- Lecture 2 (3/23): Workshop (Cont.) & Advanced Features
- Lecture 3 (3/28): 4CeeD Backend Services
- Lecture 4 (3/30): SENSELET/MAINTLET

Introductory Questionnaire

- Do you describe yourself more of a computer scientist or a material scientist?
- Do you conduct your research primarily on modeling/simulation or experimental research?

What is 4CeeD and its goals?

 Address Scientific Digital Data Acquisition, Curation and Sharing prior to Scientific Publication of Results via Private Cloud Storage Facility

Instrument (in MRL/HMNTL/BI)

Sidewall View of AlGaAs DBR Hitachi S4800 SEM **Experimental Setting** Time: 30 min Temp: 425°C

Observation Notes:

Oxidation depth is 12 um Oxidation layer is Al_{0.98}GaAs N₂ bubbler flowing steam 2" Quartz tube furnace

Sample Experimental Dataset from SEM Imaging

Why is current data collection an issue?

- Consideration of National Academy Studies: 20-year gap from discovery of new materials to implementation of nextgeneration devices
- Necessitates real-time and trusted processing from materials to-devices digital data

Red LED (1962) Holonyak, Jr. Blue LED (1993) Nakamura

Transistor (1947) Bardeen

Graphene(2004) Geim and Novoselov

IILLINOIS 5

Why is University data collection unique?

- Industry concentrates on scaling and improving reliability and manufacturability to deliver an end product (smartphone, cars)
- Academia concentrates on diverse and riskier research using older equipment to prove innovative ideas and concepts

Industrial Wafer Fabrication Cleanroom

University Cleanroom (HMNTL)

ILLINOIS 6

Current State of Data Capture

LLINOIS

Scenario with 4CeeD Integration

How is Metadata Currently Stored?

- Manual notetaking of complex experiments can lead to inconsistent or inadequate documentation
- Data transfer from tools is often done using flashdrive or emails that carry limitations and security risks
- Material research data is expensive and time intensive
 - Publication data is often documented well but remaining data is discarded

TION	#
01/21/2019	
- Stating an RIP as at li	
HCP-ON	
AIB-Jan cond A-24 Jy	
	- 0-4h sp (73 h ray)
- sell-care hely	20140 V2014
Mole: an all gen The text rom light non-	and a fill
white a come to be a come	54.
evitariana	
- Sample & that to gover - reason of	71104
- Main Redo up alton souls - In 8 10.	10 m - 00 015 8 11 40 m 7-1 15-1
BELLINA - Merana	
Bly. BLB for had songle	
a Ban She store he all single	On Uneral
P.Con BLD Mpall	(4 1)
A: + 2.73 por +2.11 por !!! (too low)	fe of
8: 4-27 m +269 m	
Blight he are & Swip 01/11/204	
2.15-1 0 19:00 m 01/11/200	
The as & Riss a Million	
Fin all hall	I like Open virter a one to cart fish
Fline Dia Hagle	Unge Mayle with Dens
	# 2 Her Single, Pale lin Steller
Film Bis Bor Shi Hagli Ci+337 m San	E-Const (SZ NC)
(from 41 works 3,71 - 430 con stal)	ILLE - Minered (SI W)
P-Cre St (E & F)	the ace
E1-3 ja	
F - 3.12	+ S wi dot in C.O. E.E. X
P.C. all here that	1.3 m all in A.B.
A: ~ 2.28 m (~ 500 m abil) (10° m and an	
8 - 2 18 pm (~ 500 an otal) (412 and mi	1
Tel makes the	
D: +222 m (- Soo m chi)	
P. Con M Part 244	
E - 9 3. 57 La (- 930 - add) (- 30 anim)	
5 - 267 . (- 920 . a chil) [- 00 marched	

Metadata of Device Development Process

• Experiments can have multiple steps where each step is verified for success by various metrology methods

LLINOIS

How is Metadata Currently Stored?

 Multiple text and image files are necessary to capture all the pertinent data of a single experiment

LLINOIS

Example of Metrology Data (SIMS, SEM, OM, SPA)

Storing Multiple File Types

 Multiple text and image files are necessary to capture all the pertinent data of a single experiment

LLINOIS

How this looks from File Explorer

• File explorer is limited to default "file list" where information is kept in long text names

ILLINOIS

How this look from 4CeeD [Datasets]

L Patrick Su / Sample 1

Space containing the Dataset

VCSE	L Etching Expe	Select a Space 👻	- ADD	
Created by Patrick Su A Created on Jul 02, 2019		All Rights Reserved Patrick Su	Collections containing the Data	aset
	Default (Private) 🔘 Private		GaAs Etching Development 1 dataset X Remove	
Result image of 070	022019-ICP-RIE Etching Experim	ent 🗹		
			Select a collection -	+ ADD
♣ Add Files	🛃 Download All Files 🛛 🗂 Dele	ete	Tags	
Files Metao	data Comments (0)			TAG
	VCSEL GaAs Etch image/tiff Jul 02, 2019 1.2 MB No≣ 0 ₱ 0	Sample 4CeeD.tif ≰ Download ★Follow		

 4CeeD is designed to present only pertinent information for quick understanding of the experiment

Data Hierarchy in 4CeeD

• "Spaces", "Collections", and "Datasets"

ILLINOIS

Data Organization Structure

I||LLINOIS 17

Breakout Session #1: Log-In & Explore 4CeeD

learn.4ceed.illinois.edu

- "Sign Up" with Illinois email
- <u>Note</u>: Need to be on University connection to access (IllinoisNet or VPN)
- Try out 4CeeD yourself before next hands-on lecture
 - Make an account
 - Make a space, collection, dataset
 - Upload some image and add a template

Lecture Series Learning Objectives

- Lecture 1 (3/21): Overview of 4CeeD
 - Introduction to 4CeeD
 - Breakout Session #1: Log-In and Explore
 - Key 4CeeD Features: Templates for Fast Storage

LLINOIS

19

• Breakout Session #2: Upload your own data

Efficient Data Collection: Templates

• Templates and Extractors for Rapid Storage

L Patrick Su / 🗐 03-11-2019 Zn D		Space containing the Dataset
03-11-2019 Zn Diffusion M	lask Lithography	Select a Space - + ADD
Created by Patrick Su Created on Mar 11, 2019 Access: Space Default (Private) Private Public	All Rights Reserved Patrick Su	Collections containing the Dataset
Zn Diffusion Mask Lithography Step CLU-10HF 10 minutes -> 10 nm SiNx Base Metal Mask Quadrant HMDS/AZ 5214 E [10K/10K] Expose 0 seconds (HP/ST) Flood 10 seconds		Select a collection - + ADD
Develop AZ 400K 4:1 10 seconds (bulk clear at 10 seconds)	Templates are stored	Tags
🕂 Add Files 🕹 Download All Files 🗂 Delete	as Metadata	♦ TAG
Files Metadata Comments (0)		
DSCN9748.JPG image/jpeg Mar 11, 2019 898.6 kB	± Download ★Follow	

Efficient Data Collection: Templates

Experimental setting:

Time 13min Temp 425 C (Structured meta data)

Notes:

Oxidation depth is about 12um. Oxidation layer composed of Al(0.98)GaAs with thickness of 30 nm. Furnace in 2111 MNT L, 2" diameter quartz.

 Free-text view can be unorganized, hard-to-read, and difficult to compare results Templates provide consistency, accessibility, and enables digital processing (ex. Jupyter Notebook)

Dataset Metadata							
Select a template	Select a template:						
Select One			•				
Key:	Value	Units:					
Time	13	min	REMOVE				
Key:	Value	Units:					
Tempearture	425	С	REMOVE				
Key:	Value	Units:					
Oxide Depth	12	um	REMOVE				
Key:	Value	Units:					
Oxide Layer	99	%	REMOVE				
Key:	Value	Units:					
Oxide Thick.	30	nm	REMOVE				
ADD NEW				SUBMIT	CLOSE		

LLINOIS

Breakout Session #2: Templates For Fast Storage

ILLINOIS

Questions?

