## **Uncertainty quantification for solute transport modeling**

Dallas R. Trinkle and Ravi Agarwal / Materials Science and Engineering Univ. Illinois, Urbana-Champaign

Motivation: who do we blame when experiments and theory don't agree?

## ... or: how can we agree if we don't know what we're agreeing to?



Propagating uncertainty from first-principles calculations via analytic models of mass transport can quantify uncertainty in diffusivity predictions.



dtrinkle.matse.illinois.edu

## **Mass transport**



#### (nano) Kirkendall effect





20 um

## **Oxygen diffusion constant in HCP Ti**



Oxygen diffusion separates into the sum of the single networks.

H.H. Wu and D.R. Trinkle, Phys. Rev. Lett. **107**, 045504 (2011)

## **Oxygen diffusion constant in HCP Ti**



Analytical results a factor of 10 lower than experimental observations.

Analytical barriers match well to experiments.

 $D_0 = 2.18 \times 10^{-6} \text{ m}^2 \text{s}^{-1}$  $E_a = 2.08 \text{ eV}$ 

H.H. Wu and D.R. Trinkle, Phys. Rev. Lett. **107**, 045504 (2011)

## **Interstitial sites in HCP Mg**

Tetrahedral (t) Octahedral (o) Hexahedral (h) Crowdion (c) Distorted Hexahedral (dh)



| Solute   | Ground<br>state | Metastable (energy in eV<br>over ground state) $3s^2$ Metastable (energy<br>over ground state) |                               |
|----------|-----------------|------------------------------------------------------------------------------------------------|-------------------------------|
| Boron    | Octahedral      | dh (0.90)                                                                                      | dh (0.89)                     |
| Carbon   | Octahedral      | h (0.87), dh (0.89), c (0.94)                                                                  | h (0.87), dh (0.88), c (0.94) |
| Nitrogen | Octahedral      | h (0.39), c (0.99)                                                                             | h (0.39), c (0.99)            |
| Oxygen   | Tetrahedral     | o (0.21)                                                                                       | o (0.19)                      |

## **Migration barriers in HCP Mg**



## **Diffusivity in HCP Mg**



Agarwal and Trinkle, Phys. Rev. B 94 (2016)

**Exp:** Zotov and Tseldkin, Sov. Phys. J. **19**, 1652 (1976).

## Vacancy mediated diffusion in Mg

- Differences of ~0.1 eV in activation energies for rare-earth solutes
- Significant differences in crossover temperatures

| Solute | 8-freq. (Q) | GF (Q)      | Exp. (Q)                 | GF ( <i>T</i> cross) | 8-f (T <sub>cross</sub> ) |
|--------|-------------|-------------|--------------------------|----------------------|---------------------------|
| Nd     | 1.18   1.20 | 1.08   1.13 | 1.16<br>(Paliwal2015)    | 529   422            | < 0 K                     |
| Ce     | 1.14   1.15 | 1.03   1.09 | 1.82<br>(Lal1966)        | 648   589            | 252   287                 |
| La     | 1.10   1.11 | 1.00   1.04 | 1.06<br>(Lal1966)        | 746   714            | 415   452                 |
| Gd     | 1.24   1.26 | 1.16   1.17 | 0.82   0.85<br>(Das2014) | 341   218            | > 923 K                   |
| Y      | 1.25   1.27 | 1.20   1.21 | 1.01   1.02<br>(Das2014) | 271   190            | > 923 K                   |
| Ca     | 1.12   1.14 | 1.08   1.11 | 1.07<br>(Zhong2017)      | 538   501            | 309   343                 |

Agarwal and Trinkle, Phys. Rev. Lett. 118, 105901 (2017)

## Vacancy mediated diffusion in Mg



## Vacancy mediated diffusion in Zr: solute diffusivity



ACP Jain, PA Burr, and DRT, Phys. Rev. Mater. In press (2019)

## **Interstitial diffusion in Zr: solute diffusivity**



## What's the disagreement all about?

- Are there experimental issues?
  - Adequate thermal control?
  - Are point defects at equilibrium?
  - Is the species transport compositionally insensitive?
- Are there computational issues?
  - Do we have the proper diffusion mechanism?
  - Is DFT incorrect?
- Are our expectations wrong?
  - What sort of agreement *should* we be expecting?

Can we (1) quantify DFT uncertainty and (2) propagate that forward to quantify transport modeling uncertainty?

#### **Atomistic mechanism for diffusivity: interstitial solute**

# $\lim_{t \to \infty} \left\langle \frac{(x_i(t) - x_i(0))(x_j(t) - x_j(0))}{2t} \right\rangle = D_{ij}$

#### Atomistic mechanism for diffusivity: substitutional solute

## $\lim_{t \to \infty} \left\langle \frac{(x_i^{\mathrm{A}}(t) - x_i^{\mathrm{A}}(0))(x_j^{\mathrm{B}}(t) - x_j^{\mathrm{B}}(0))}{2t \ \Omega \ k_{\mathrm{B}}T} \right\rangle = L_{ij}^{\mathrm{AB}}$

**Replacing trajectories with probabilities: Master equation**  

$$\frac{dP(\underline{\chi}, t)}{dt} = \sum_{\underline{\chi'}} P(\underline{\chi'}, t) W(\underline{\chi'} \to \underline{\chi}) - P(\underline{\chi}, t) W(\underline{\chi} \to \underline{\chi'})$$

$$= \sum_{\underline{\chi'}} P(\underline{\chi'}, t) W_{\underline{\chi'}\underline{\chi}} \qquad \text{configuration } \underline{\chi}, \text{ probability } P(\underline{\chi}, t)$$

#### Master equation:

- Well-defined states that thermalize before next transition
- Markovian process (no memory)
- Equilibrium: detailed balance (no fluxes)
- Steady state: balance (constant fluxes, no time evolution)



#### **Atomistic mechanism for diffusivity: "five frequency model"**



## **Jump frequencies: harmonic transition state theory**



- First-principles (DFT) calculation of:
  - transition state using nudgedelastic band
  - phonon frequencies from finite difference force constants
  - electronic contribution from density of states (ignorable)



## **Computing diffusivity: random walk**

$$\mathbf{x}(t) - \mathbf{x}(0) = \sum_{n} \delta \mathbf{x}_{n} \quad \text{Atomic jumps}$$

$$(\mathbf{x}(t) - \mathbf{x}(0)) \otimes (\mathbf{x}(t) - \mathbf{x}(0)) = \sum_{nn'} \delta \mathbf{x}_{n} \otimes \delta \mathbf{x}_{n'}$$

$$= \sum_{n} \left\{ \delta \mathbf{x}_{n} \otimes \delta \mathbf{x}_{n} + 2 \sum_{m=1}^{\infty} \delta \mathbf{x}_{n} \otimes \delta \mathbf{x}_{n+m} \right\}$$
Subscripting methods:
Subscripting methods:

- Stochastic methods:
  - Molecular dynamics (including accelerated approaches)
  - Kinetic Monte Carlo<sup>1</sup> (including on-the-fly)
- Multiple issues:
  - **Stochastic**: increasing number of trajectories to reduce variance
  - Correlation:
    - increasingly long trajectories to reduce error
    - increasingly size cells to reduce error
    - poor convergence for systems with large rate anisotropy
  - Evaluating derivatives with respect to strain converges poorly<sup>2</sup>

<sup>1</sup>G. E. Murch, *Diffusion in Crystalline Solids*, (1984) Chap. 7

<sup>2</sup>Li and Trinkle, Phys. Rev. E 96 (2016)

+ 
$$\frac{1}{k_{\rm B}T\Omega} \sum_{\chi\chi'} P_0(\chi) \mathbf{b}^{\alpha}(\chi) g_{\chi\chi'} \mathbf{b}^{\beta}(\chi')$$

#### correlation

Interstitials: Trinkle, Phil. Mag. **96** (2016) Vacancy-mediated: Trinkle, Phil. Mag. **97** (2017)

## **Quantifying uncertainty in DFT**

#### Density functional theory is not exact

- Controlled approximations: basis size, supercell size, *k*-point integration
- Uncontrolled approximations: exchange-correlation potential

#### • No more than one exchange-correlation treatment is correct

- Local-density approximation (LDA): Ceperley-Alder
- Generalized gradient approximation (GGA): PBE
- Meta-GGA: SCAN
- Hybrid functionals
- ... and many, many more

#### • How can we quantifying uncertainty in DFT?

- Bayesian approach: sample over different exchange-correlation treatments, weighted by likelihood (e.g., PRL 95, 216401 (2005))
- Empirical estimate from variability in results

**Example:** vacancy-mediated diffusion in magnesium

## **Uncertainty in DFT input data for Mg**

1. Use three distinct exchange correlation treatments:

- Local-density approximation (LDA): Ceperley-Alder
- Generalized gradient approximation (GGA): PBE
- Meta-GGA: SCAN

2. Use PAW-PBE relaxed positions as initial guess

- Scale supercell dimensions to LDA or SCAN lattice constants
- Compute energy and forces
- Approximate relaxation energy with PBE lattice Green function:  $\Delta E = -\mathbf{f} \cdot (D^{-1}) \cdot \mathbf{f}/2$
- Gives correct energies with < 5 meV error

| Energy [eV]                 | PBE   | LDA   | SCAN  |
|-----------------------------|-------|-------|-------|
| Vacancy formation energy    | 0.814 | 0.852 | 0.948 |
| Pyramidal activation energy | 0.417 | 0.429 | 0.489 |
| Basal activation energy     | 0.397 | 0.409 | 0.481 |

#### **Atomistic mechanism for diffusivity: "five frequency model"**



## **Vacancy-solute complexes in HCP**

- 2 different first-neighbor complexes: 1b 1p
- 7 different "next jump" complexes: 2p 3c 4b 4<u>b</u> 4p 5p 6b



Agarwal and Trinkle, *Phys. Rev. Lett.* **118**, 105901 (2017)



## **Uncertainty in DFT input data for Mg**

1. Use three distinct exchange correlation treatments:

- Local-density approximation (LDA): Ceperley-Alder
- Generalized gradient approximation (GGA): PBE



## **Uncertainty in DFT input data for Mg**

1. Use three distinct exchange correlation treatments:

- Local-density approximation (LDA): Ceperley-Alder
- Generalized gradient approximation (GGA): PBE
- Meta-GGA: SCAN
- 2. Differences due to XC similar for different chemistries:

#### treat as random variation

#### **Covariance matrix:**

- Diagonal: variance around mean
- Off-diagonal: (anti)correlation between quantities across different chemistries
- Source of variability: solute chemistry and exchange-correlation treatment



Agarwal and Trinkle, Uncertainty Quantification in Multiscale Modeling (2020)

## **Uncertainty in diffusivity**

1. Take variability in DFT input parameters and sample possible DFT data

- Bayesian inference approach
- Assume multivariate normal distribution: empirical covariances ( $\Sigma$ ) and mean values ( $\underline{\theta}$ )

$$P(\theta) = \det(2\pi\Sigma)^{-1/2} \exp\left[-\frac{1}{2}(\theta - \bar{\theta})\Sigma^{-1}(\theta - \bar{\theta})\right]$$

mean value of 
$$f: \langle f(\theta;T) \rangle = \int_{\theta} d\theta \ P(\theta) f(\theta;T)$$
  
probability distribution of  $f: P^{f}(f_{0};T) = \int_{\theta} d\theta \ P(\theta) \delta(f_{0} - f(\theta;T))$ 

## **Uncertainty in diffusivity**

1. Take variability in DFT input parameters and sample possible DFT data

- Bayesian inference approach
- Assume multivariate normal distribution: empirical covariances ( $\Sigma$ ) and mean values ( $\underline{\theta}$ )
- 2. Distribution of predictions:
  - Diffusivities follow approximately log-normal distributions
  - Drag ratios ( $L^{SV}/L^{SS}$ ) follow more complex distribution

3. Computational details:

- Use Gaussian-Hermite quadrature for vacancy parameters for computational efficiency
- Multivariate normal distribution samples for solute-vacancy parameters

$$\theta = \begin{pmatrix} \theta^{\rm v} \\ \theta^{\rm s} \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma^{\rm vv} & \Sigma^{\rm vs} \\ \Sigma^{\rm sv} & \Sigma^{\rm ss} \end{pmatrix} \qquad P(\theta) = P^{\rm v}(\theta^{\rm v})P^{\rm s}(\theta^{\rm s}|\theta^{\rm v})$$

## **Uncertainty in diffusivity**

3. Computational details:

- Use Gaussian-Hermite quadrature for vacancy parameters for computational efficiency
- Multivariate normal distribution samples for solute-vacancy parameters

$$\theta = \begin{pmatrix} \theta^{\rm v} \\ \theta^{\rm s} \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma^{\rm vv} & \Sigma^{\rm vs} \\ \Sigma^{\rm sv} & \Sigma^{\rm ss} \end{pmatrix} \qquad P(\theta) = P^{\rm v}(\theta^{\rm v})P^{\rm s}(\theta^{\rm s}|\theta^{\rm v})$$

- Both  $P^{v}(\theta^{v})$  and  $P^{s}(\theta^{s}|\theta^{v})$  are multivariate normal distributions.
  - $P^{v}$  has mean  $\underline{\theta}^{v}$  and covariance  $\Sigma^{vv}$
  - $P^{s}$  mean depends on  $\theta^{v}$  but covariance is independent:

$$\begin{array}{ll} \mathrm{mean}: & \bar{\theta}^{\mathrm{s}} + \Sigma^{\mathrm{sv}} (\Sigma^{\mathrm{vv}})^{-1} (\theta^{\mathrm{v}} - \bar{\theta}^{\mathrm{v}}) \\ \mathrm{covariance}: & \Sigma^{\mathrm{ss}} - \Sigma^{\mathrm{sv}} (\Sigma^{\mathrm{vv}})^{-1} \Sigma^{\mathrm{vs}} \\ \langle f(\theta^{\mathrm{v}}, \theta^{\mathrm{s}}; T) \rangle = \int_{\theta^{\mathrm{v}}} d\theta^{\mathrm{v}} P^{\mathrm{v}} (\theta^{\mathrm{v}}) \left[ \int_{\theta^{\mathrm{s}}} d\theta^{\mathrm{s}} P^{\mathrm{s}} (\theta^{\mathrm{s}} | \theta^{\mathrm{v}}) f(\theta^{\mathrm{v}}, \theta^{\mathrm{s}}; T) \right] \\ \langle f(\theta^{\mathrm{v}}, \theta^{\mathrm{s}}; T) \rangle \approx \sum_{i=1}^{N_{\mathrm{GH}}} \frac{w_{i}}{N} \sum_{j=1}^{N} f(\theta^{\mathrm{v}, i}, \theta^{\mathrm{s}, j}; T) \end{array}$$

## **Uncertainty in diffusivity: histograms of X-Mg**

1. Take variability in DFT input parameters and sample possible DFT data

- Bayesian inference approach
- Assume multivariate normal distribution: empirical covariances and mean values



Agarwal and Trinkle, Uncertainty Quantification in Multiscale Modeling (2020)

## Uncertainty in diffusivity: X in Mg vs. experiment



## **Uncertainty in drag: histograms of X-Mg**



Agarwal and Trinkle, Uncertainty Quantification in Multiscale Modeling (2020)

## **Uncertainty in drag: X-Mg**



## **Uncertainty in drag: X-Mg**



## **Uncertainty quantification for solute transport modeling**

Dallas R. Trinkle and Ravi Agarwal / Materials Science and Engineering Univ. Illinois, Urbana-Champaign

Motivation: who do we blame when experiments and theory don't agree?

## Vacancy-mediated diffusivity

- Quantifying uncertainty in DFT values
- Quantifying uncertainty in diffusivity when there are multiple activated processes at play

#### Applying error bars to DFT predictions

- Future calculations can include DFT errors
- Derivatives sufficient for diffusivity UQ

### Possible correlations across solutes

- Fast substitutional solute diffusivity dominated by vacancy processes: may look like systematic errors
- Slow substitutional solutes and interstitial solute diffusivity dominated by solute processes

0.8- 300K Ca 500K 0.6-900K 0.4 0.2 Frequency basal *c*-axis 0.60.4 0.2 300K W Li 1.2 500K 900K 0.6



Propagating uncertainty from first-principles calculations via analytic models of mass transport can quantify uncertainty in diffusivity predictions.

Computational resources from Turing@UIUC, NSF/Teragrid, DOE/NERSC DOE/BES (DE-FG02-05ER46217), ONR N000141210752, NSF/CDSE 1411106 dtrinkle.matse.illinois.edu