
MODULE 3:  
DISLOCATION DYNAMICS

Principles and Theory



I. Introduction
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http://www.lbl.gov/CS/html/exascale4energy/nuclear.html

You are 
here
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What is dislocation dynamics?
A (predictive?) guide to the evolution of materials 
microstructure
An experiment on a computer
A simulation of the “classical” dynamics of dislocations

4http://llnl.gov   http://dierk-raabe.com



Why is it useful?
By simulating dislocation motion, interaction, and growth, we 
can gain mesoscale insight into dislocation structure

Advanced experimental techniques (TEM, high-energy X-ray 
diffraction) can resolve dislocation structure, but not dynamics

We can predict and understand dislocation behavior 
and compare / interpret experimental observations

Total control of dislocation interactions and initial conditions

Nanomechanical measurement approaches scale of DD
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What is it used for?
Bridge from atomistic to mesoscale
- dislocation behavior and interaction scale up

Understanding strain hardening
- dislocation density growth with strain & 

importance of interaction mechanisms

Examining small-scale plasticity
- micro- and nano pillars show unusual  

plastic behavior due to dislocations

Parameterizing larger-scale models
- dislocation-density-based crystal plasticity

6http://llnl.gov  http://icams.de  



Dislocations and plastic deformation 7

Peach-Kohler force Orowan equation

applied stress plastic strain

force on dislocations dislocation motion

dislocation mobility 
Peierls stress 

dislocation/obstacle interaction



II. History
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First DDD simulations
Robert Amodeo and Nasr Ghoniem (1997-1998) start 
direct numerical simulations of interacting dislocations to 
understand cell formation
Range of efforts worldwide:

Cai/Bulatov/Arsenlis
Devincre
Ghoniem/Al Ezab
...

In addition, there are other approaches that attempt to 
model dislocations as entities:

Phase-field methods
Level-set methods

All of the discrete dislocation dynamics methods 
benefit heavily from parallelization
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III. Basic Principles
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DDD simulates dislocation motion using overdamped 
dynamics: similar to MD, but with a mobility law not mass.

Running a simulation is like cooking - just follow the recipe!

Three ingredients:

1. An initial system configuration: dislocations
2. Interaction between dislocations: Peach-Kohler
3. Evolving dislocation geometry: mobility + remeshing

The fundamental idea
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Represent dislocation curves

Unlike MD, dislocations are 
one-dimensional objects: hence, 
discretization
Different approaches:

Dislocation as line segments
Dislocation as cubic spline
Dislocation as connected arcs
Dislocation as “rastered” pure edge and screw segments

Dislocation intersections have to be considered as well
Typically use Frank-Read or one-armed sources

Ingredient 1: Initial configuration
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1 Introduction of DDLab and ParaDiS 
 
DDLab and ParaDiS are dislocation dynamics simulation codes.  They use the same 
algorithm for the calculation of node force, node velocity and topological changes, etc.  
The difference between them is that DDLab is a MATLAB code which is mainly used in 
simulations with a small number of dislocation segments, whereas ParaDiS is a C code 
which can perform well on massively parallel computers and suitable for large systems.  
DDLab was initially written as a development and debug tool for ParaDiS. 
 
The purpose of this course is to help users understand the basic theory behind the code, 
how to set up the simulation and how to run the code. The users may then become better 
prepared for more complex cases in the future. 
 
This course consists of 10 sections, section 2 describes how to represent a dislocation 
loop in the code, section 3 shows the flow chart of the code. Sections 4 and 5 discuss how 
to calculate the node force and the node velocity, and section 6 describes the topological 
changes. Sections 7 to 10 give examples of how to use DDLab and ParaDiS to simulate 
FR source and junction. 
 
2 How to represent a dislocation structure 
 

 
 



Ingredient 1: Frank-Read source

13www.wikipedia.org



Ingredient 2: Interaction forces
The net force acting on each dislocation in the system is a 
result of its interactions with all other dislocations + 
applied stress

The underlying physical form is well-established: Peach-
Kohler force
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• Dislocation line: separates “slipped” from “unslipped” parts of crystal 
• Sweeping out area displaces top part of crystal 
• Force on top area times displacement = −work done on dislocation

Dislocation motion under stress 15
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• Force per length (“Peach-Kohler force”) 
• Always perpendicular to dislocation line 
• Force in slip plane: glide force 
• Force normal to slip plane: climb force (edge) or cross-slip (screw)

Dislocation motion under stress 16

b

n

v=b×n

t = v cos θ + b sin θ

θ

dF = (� · b) ⇥ dt

=

0
BBBBBB@

�vv �vb �vn
�vb �bb �bn
�vn �bn �nn

1
CCCCCCA ·
0
BBBBBB@

0

b
0

1
CCCCCCA ⇥
0
BBBBBB@

cos✓
sin✓

0

1
CCCCCCA dt

=

0
BBBBBB@

�bvb
�bbb
�bnb

1
CCCCCCA ⇥
0
BBBBBB@

cos✓
sin✓

0

1
CCCCCCA dt

=

��������

v b n
�bvb �bbb �bnb
cos✓ sin✓ 0

��������
dt

= �bnb(�v sin✓ + b cos✓)

+ �bvb sin✓n � �bbb cos✓n

glide force

cross-slip force

climb force



• Force per length (“Peach-Kohler force”) 
• Always perpendicular to dislocation line 
• Force in slip plane: glide force 
• Force normal to slip plane: climb force (edge) or cross-slip (screw)

Force on an edge and screw dislocation 17
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To use, we need to need to be able to calculate stress at 
each point, and translate force on a dislocation segment 
onto the dislocation “degrees of freedom” (nodes)
For elastically isotropic materials (with a core “cutoff ”)

Stress and force
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Edge dislocation: stress field 20
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Edge dislocation: stress field 23
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To use, we need to need to be able to calculate stress at 
each point, and translate force on a dislocation segment 
onto the dislocation “degrees of freedom” (nodes)
For elastically isotropic materials (with a core “cutoff ”)

Stress and force
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to node i. Suppose x lies on segment ij, then 
 

                                                                                               (8)  
 
i. e. , Ni(x) goes linearly from zero at node j to 1 at node i, as illustrated in Figure 2. 
 
 
Based on shape function and PK force, the elastic force on node i is: 

                                                             (9)                   
 
From Eq.(9) we know that the nodal force are weighted averages of the PK force along 
the segments connected to the node. 

                                  
 
Figure 2:  The shape function N2(x) for node 2 varies linearly from 1 at node 2 to 0 at its 
two neighbors: node 1 and node 3. 
 
Notice that the PK force is proportional to the local stress field, which is the 
superposition of stress fields from all dislocation segments in the system. 
 
In both DDLab and ParaDiS, we use the second approach, Eq.(9), to compute nodal 
force. The detailed description of nodal force can be found in Ref. 1. 
 
 
 

Q: What does integral along C mean if it is not a loop? 
A: If C is not a loop, then the integral along C is evaluated over a set of 
directed paths that traverse the entire network visiting every point on it 
exactly once. 
 
Q: Do we need to compute stress field along the entire line C to obtain the 
force on one node from Eq.(9)? 
A: No.  Because the shape function is only nonzero at the segments connected 
to the node, the integrand vanishes on the segments which do not connect to 
the node and do not need to be evaluated. 
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Ra =

p
kx � x

0k2 + a2

For line segments, map force to nodes by integrating a 
linear “shape function” along connected segments



Ingredient 3: Evolution of dislocations
Initial dislocation geometry + forces on dislocation: 
How to evolve? F=ma?

Dislocations aren't “objects” with mass; instead, they 
experience an overdamped dynamics where velocity is 
proportional to force: mobility.
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LiF 
crystal

Fe-3.25%Si 
crystal

Dislocation velocity: thermal activation 27



Ingredient 3: Evolution of dislocations
Initial dislocation geometry + forces on dislocation: 
How to evolve? F=ma?

Dislocations aren't “objects” with mass; instead, they 
experience an overdamped dynamics where velocity is 
proportional to force: mobility.

Mobility can be anisotropic
In plane: edge dislocations vs. screw dislocations
Out-of-plane: cross-slip (screw) vs. climb (edge)
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Ingredient 3: Evolution of dislocations
Given velocity on nodes, integrate nodes forward in time

Euler forward / backward schemes

Newton-Krylov, other sophisticated integrators
Remeshing:

Too few nodes to represent the curvature? 
Introduce new nodes (split)
Too many nodes in a small area of space? 
Eliminate extra nodes (merge)

Dislocation annihilation reactions: elimination of dislocation 
segments with opposite Burgers vector
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Forward: x(t + �t) = x(t) + �t ẋ(t)
Backward: x(t + �t) = x(t) + �t ẋ(t + �t)



Dislocation dynamics flowchart
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calculate force on each node

calculate velocity of each node

calculate new position of each node

split / merge nodes



IV. Advanced Topics
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Boundary conditions
Interaction between dislocations (calculated via stress) 
depends on the boundary conditions:

Most simulations assume periodic boundary conditions
Simulations of finite systems involves image stresses

Interaction calculation can be accelerated with Fast 
Multipole Methods (similar to charged interactions)
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V. Dislocation Dynamics Packages
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DDD software
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ParaDiSParaDiS
http://paradis.stanford.edu/


