DU E R
INTRODUCTION

LInux & bash shell



I. LinuXx



What is Linux?

LINuX IS an operating system (OS) developed
oy Linus Torvalds in 99|

Based on UNIX - developed in response to
closing legal loophole that made UNIX free

Many “distributions’ - Fedora, RedHat,
CentOS, Debian, Ubuntu

Typically free and open source GNU licensing

Command line interface (CLI) and graphical
desktop environments (GDE)

Richard Stallman 3



Why Linux?

Developed by Bell Labs in 1969, and inttially free, UNIX
was quickly adopted as de facto scientific computing OS

Powerful CL| enables direct low level access
GDE provides simplicity and usability

Free and open source makes code development easy

Linux Is everywhere

- 90% of supercomputers run Linux (incl. Blue Waters)
- Android OS5 is based on a Linux kernel

- Ubuntu distro i1s the most popular OS in the worla




Can’t | use Windows /7 Mac OS X7
Maybe.

Some software have Mac OS5 X / Windows / Windows +
Cygwin versions to install on your local machine

Remote login via Mac OS X terminal / [Windows +
Cygwin / Putty] to SSH into EWS Linux

A key learning objectives of this course Is to develop
familiarrty and competence using Linux - Bon Courage!

Dornn’t Fear the Penganns.



What distro are we using?

EWS Linux machines run Redhat linux

Activities  Applications  Places [ Terminal Jan15 14:48 (%] a v o

= dtrinkle@fastx3-33:~ LN E x
G oFi iorm g
ENGINEERING WORKSTATION LABORATORY
ENGINEERING IT
S H A REEFDSSIE REVE|EGE E S
ews.illinois.edu | 217-333-1313
https://go.illinois.edu/ewshelp
EWS reserves the right to log off machines after 10-minutes of inactivity
[ ] dtrinkle@fastx3-33:~ E]



1. bash shell



The commmand line

CLI and GDE offer alternatives to

interact with a machine

Switching to a CLI can be very intimidating for new users!

CLI interaction I1s powerful, concise, and efficient

CLI scripting enables task automation

e.g. Download of 1500 daily NAS

BJA@ sueid < piflice:

GDE: Point and click file download extremely tedious!
CLI:  Trivially automated using CLI wget loop




bash shell

“Command line interpreters” |
or ‘shells” convert text Inputs (S

portage
[ ] 4 i In"q)-
- 1 portage

@RS commands
r r 1 portage

g e 1 portage

I portage
1 portage
portage

1 root )
> portage

1 por !‘1')—-

Many flavors: sh, bash, ksh, csh, [EaEes

pkonetadata

her d :....‘..._-1.]-1#": herd
use

flag name=’bashlogger 0Q ALL commands
) s [

flag name=" : /dev/ico
f1ag nasa= ins RAdd support
able
/use
/pkometadats

init.d/bluetooth stat

The bash shell ("Bourne-again [ e
SElS RS one of the most o
popular, and the default on

~ansaltied

Module
rndis_wvlan

s_wlan

many Linux distros S B mER e

8

1 parpor




I11. bash basics



bash: basics

Pop a bash terminal by clicking on il
or navigating Applications = System lools & Terminal

pwd - show path to present working directory

1s = [sticontents of cUrrent CifcciEinn

1s —alh - listall contents of cdir in long form with
human readable file sizes

ls /sw/q - list contents of directory /sw/a

cd <path>- change directory into <path>
g6l . . - change directory up one level

el . ./ .. - change directory up two levels



bash: basics

touch <file> - make new file <fi
access of existing file

N\

mkdir <dir> - make directory

e> or update last

chmod 755 <file>- change file permissions to

r+wtXx (use

6 G

chmod 644 <file>- change file per

vy (Ui

(group, world)
mMissions to

" (grou

D, world)

[N.B.r=4, w=2, x=1]

var=ferrari42 - assignferrari42 to var

echo $var - print $var



bash: basics

. /<execFile> - execute execFile in cdir
<path>/<execF1le> - execute execFile in path

which <cmd> - location of corimicte
cmd
clear - clear terminal

wget -0 <file> <url> - download url data into
file

es. wget -0 myProf.png http://bit.ly/
27TtINAL E


http://bit.ly/2jt9NAl
http://bit.ly/2jt9NAl

bash: basics

Cp <source> <target> - copy file source to
target

eg. cp myFile /apps/doc/

Cp —-r <source> <target> - copy recursively
(copy source directory and everything in it)

eg. cp -r myDir ./dirl/dir2/

mv <source> <target>- move source to target
(same for files and directories)

rm <file> - remove flile



bash: safety!

cp / rm / mv -These do exactly what you ask

hey do not ask for permission
Furthermore, there is no Trash/Recycling
Once you remove / overwrite a file, Iit's gone.

Standard “safety” choices: use alilas in your .bashrc
SESIEas cp="cp -1’
alias rm="rm -1’
alias mv="mv -1’

set -0 noclobber
You don't have to do this, but you may breathe a little
easier with some safety.




bash: basics

whoaml - show your login username
who - show everyone currently logged in
cat <file> - show file contents

less <file> -show file contents (spacebar ¥,
b a)

head <file> - show head offile
EEN < Flle> - show tail of file

el —n <nlLines> <file> - show tal nEREs
of file




bash: basics
zlp <archive> <filel file2 ...>

Ctieate zIp file archive.zip containing Tl FHillEZemn
unzlip <archive>

- unzip zip file archive.zip

tar cvzf <archive.tgz> <filel
[FElte? . ..>

- create gzip compressed tape archive archivetgz
Gelfamins tiel tieZ, ..

tar xvzf <archive.tgz>

- uncompress end extracted compressed tape



bash: basics

top - show active processes

Top —0 cpu - show active processes ordered by cpu
76

top —-U <usr> - show active processes owned by
usr

grep <str> <file> - return lines in file containing
string str

find <path> —-name <*str*> —-print

- print all files in path containing str in their name



bash: special symbols

v - your home directory
- current directory
- directory one |eveREis
x - wildcard character

\ - escape succeeding character

eg. mkdir My\ Directory

| - pIpe



bash: special symbols

> - redirect standard output and overwrite
> > - redirect standard output and append
eg.echo ""Today was great!” >>
myDiary.txt

$var - dereference variable var

‘il - enclose text string but expand $

ot - enclose text string but do not expand $

eg. myVar="My String With Spaces”
echo ”This is $myVar”

VSTUTT> Y - execute stuff first

Eaecho ‘expr 1 + 1°

20



1V. bash utilities

2|



bash: integer arithmetic

expr - Integer arithmetic engine
29

echo ‘expr 1 + 1%

varl=‘expr 10 \* 2?

elk2="expr 21 / 1°

echo $varl $vare ‘expr $varl /
$vare?

20 3 6

A A A O A

22



bash: quick calculator

bc -1 - arbitrary precision calculator (w/ math lib)
e 1

2/3
.66666666666666666666
2/3

8

e(l)
2./1828182845904523536
piza(1)*4

pl
3.14159265358979323844
s(p1/6)

95 599999999999939

23



bash: ssh & scp

SSH CL| remote login Is supported by ssh (secure shell)
ssh <user>@<hosthame> - login to host

ssh =Y <user>@<hostname> - login to host w/
secure X forwarding (use this to get graphics via SSH!)

N.B. For EWS, hosthname=linux.ews.illinois.edu

SCP CLI file transfers supported by scp (secure copy)

scp <src> <user>@<hostname>:<target>
- upload

scp <user>@<hostnhame>:<src> <target>

- download

A



bash: ssh & scp

nal

ssh and scp are prepackaged with Linux / Mac OS X and

are accessible directly from the bash term

d party ssh

On Windows, you need to download a th
client in order to make a ssh connection w

ith EWS

=5 |ECR [~

RS

@ nova.kettering.edu - PuTTY

™~
N
™~
=i
=
0 2
BN
@)
ool
=
2
qu
L oo
==
C O
© O
Nl
Tk
00
e e
+~ O
)
O
S
oY)
Cay
O
>t
+
=5
@l

2


http://www.putty.org
https://answers.uillinois.edu/illinois.engineering/page.php?id=81727

bash: sftp

SFTP more sophisticated alternative to scp
(secure file transfer protocol)

sttp <user>@<hosthame> - login to host
1s - remote [s

I8lSs - local Is

pwd - remote pwd
lpwd - local pwd

cd - remote cd

li{ele - local cd

cet <file> - download file

put <file> - upload file

26



bash: vi/vim

Two built-in CL| text editors:  vi/vim & emacs
Seem slow and painful, but invaluable for on-the-fly edits

Use whichever you prefer; | use both.

(It is very fashionable to argue over which is better...)
vi/vim Is fast for text manipulation, uses two modes
emacs Is has lots of built-in modules, more “Word-like

Iwo-modes: navigation for moving
for editing
mode Is the default mode, and can be accessed by
hitting Esc

mode Is accessed by hitting i

27



bash: vi/vim

Nav mode
A €D - single char / single line movement
gg - 90 to top of file
N - 90 to beginning of line
$ - g0 to end of line
<N>0 - go to line n
W - skip forward one word
b - skip backward one word

Vy or y$ - copy current line
y<n>¥ - copy next n lines




-

> O H

bash: vi/vim

Nav mode

delete character

create new line below and enter insert mode

enter insert
enter Insert
enter Insert

enter Insert

MOC

0110)1d

Rilera

R©C

e to left of current character

e at beginni
e to right o

e at end of

ng of line

" current charaei=l

Ine

2



Nav mode
dd or d$ - de
d<n>w - de
Gl >VY - de
u

bash: vi/vim

ete current line

ete next n words

ete next n lines

- undo
Ctrl+r -redo

30



bash: vi/vim

Nav mode
/<str><Enter> - searc

S tP><Enter> - searc

B

g

forward for str

DACNARE @R

N - @@ e Eyat RariE
<N>n - g0 to Nth match

31



Nav mode
‘W - writes
cw! ~ VEESE
S ] - qurt
(e[
s WQ - write
:wq! - write C

bash: vi/vim

€

e even If read only

- quit and don't question me
(sood way to mess things up)

urt

ur

LaRcidomit @icsieRNme

(very gooc

way to mess things up)

S



bash: vi/vim
Ins mode

Type normally - what you enter appears on screen

AV &> Wwork as iIn nav mode

Hit ESC to get back to nav mode

aE



bash: .bash_profile & .bashrc
Hidden files start with .

~v /. bashrc is executed for every new terminal

~v/.bash_profile is executed when you login
(v/ .bash_profile calls v/ .bashrc)

These files are useful to store aliases and modify PATH

N.B. On some systems v/ .bash_profileis

A



bash: .bash_profile & .bashrc

(i) Use vi to add 11S as dlias for LS —al to .bashrc

$ vi ~/.bashrc

G

0

alias 1lls="1s -al"
[ESC]

tWQ

edit .bash

ge

o0 1O enc

of file

edit line below

add alias
ESEdDERE)

write and

navigate mode

quit



bash: .bash_profile & .bashrc

O0O0 alf@linux7:~ — ssh — 115x32
# .bashrc
# EWS .bashrc Template
=
# Process the systems global .bashrc (DO NOT REMOVE)
# Source global definitions
it [ =T fetc/bashrc |; then
. /etc/bashrc
T1
# If you want to modify an environment variable, for example, the search
# path, take into account the value that the variable already has. For example
# if you wish to add the directory /local/appsl/cl to your search path,
# you would use
I
# export PATH=$PATH:/local/appsl/cl
b
# This merely appends the directory /local/appsl/cl to the already-existing
# search path.
=
# You can also create aliases for often-used commands. For example, if you
# would prefer to type 'dir' instead of 'ls -FC', you could use
=
# alias dir="1s -FC"
=
# so that each time you typed 'dir', it would be as though you had typed
# 'ls -FC'
=

B

User specific aliases and functions go below

alias lls="1s -1"

~

1,1

)'m

"B

36



bash: .bash_profile & .bashrc
(i) Use vito add v/1ocal/bin to your PATH in .bashrc

$ vi ~/.bashrc edit .bashrc

G g0 to end of file

0 edit line below
export PATH=$PATH:~/local/bin addto
PATH

[ESC] escape to navigate mode

s WQ write and quit

S



bash: .bash_profile & .bashrc

e e alf@linux7:~ — ssh — 115x32

A

-
=
=
=

1t

-ty
'_4.

HERBERBERRRERERBERER SRR

-

.bashrc
EWS .bashrc Template

Process the systems global .bashrc (DO NOT REMOVE)
Source global definitions
[ -f fetc/bashrc 1; then
. [fetc/bashrc

If you want to modify an environment variable, for example, the search

path, take into account the value that the variable already has. For example
if you wish to add the directory /local/appsl/cl to your search path,

you would use

export PATH=$PATH:/local/appsl/cl

This merely appends the directory /local/appsl/cl to the already-existing
search path.

You can also create aliases for often-used commands. For example, if you
would prefer to type 'dir' instead of 'ls -FC', you could use

alias dir="1ls -FC"
so that each time you typed 'dir', it would be as though you had typed
'"Is -FC'

User specific aliases and functions go below

alias lls="1s -1"
export PATH=$PATH:~/local/bin

1,1

ALl

) 'm

"B

N < »C



A A A A

A HH

bash: installing software

Typical anatomy of an installation from source:

wget <app_url> download
tar xvzf <app.tgz> uncompress
cd ./app

. /configure —-prefix=<location>
configure and specify location

make compile

make 1nstall install

3



V. bash scripting

40



What is bash scripting?

A bash script i1s nothing more than a list of bash
commands In an executable text file

Exactly the same behavior could be achieved by copying
and pasting the script into the bash shell

Extremely powerful way to automate system tasks

e.g. Tile downloads
system backups
Job submission
file processing

41



Anatomy of a script

A script Is nothing more than a text file
- write using vi, emacs, Notepad, or favorite text editor

S M helloWorld

#! /bin/bash (— the “sha-bang” ine

# this is my hello world script — CommethS (Start Wlth #)

echo "Hello World!"

list of bash commands

42



Script I: hello worlid!

$ touch helloWorld new script file
$ chmod 755 helloWorld making executable

$ vi helloWorld edit line below
i enter insert mode

#!/bin/bash <Enter>
# this 1s my hello world script

echo ”"Hello World!”
[ESC] escape to navigate mode
s WQ write and quit

olole Terminal — bash — 86x7

tuckernuck:scripts alf$ ./helloWorld
Hello World!
tuckernuck:scripts alf$ || L)

Ao



Script 2: backup
Passing variables $1, $2, $3, ..

oleole M backup

#!/bin/bash

. Placing all files in current directory into a
# compress and store current directory .
compressed tape archive bkp.tgz
tar czvf bkp.tgz ./*

mv bkp.tgz bkp $1.t07 C—

Renaming bkp.tgz bkp_<arg>.tgz where
arg I1s the first argument In the call to the
000 Terminal — bash — 63x24 _ exeCUtab|e

tuckernuck:scripts alf$ pwd
/Users/alf/Box Documents/MSE498/1_intro/2_bash/scripts
tuckernuck:scripts alf$ 1s

backup helloWorld

tuckernuck:scripts alf$ ./backup 29thJuly2013
. /backup

./helloWorld

tuckernuck:scripts alfs$ 1s

backup hellowWorld

bkp_29thJuly2013.tgz
tuckernuck:scripts alf$ ||

44



Script 3: summer

while loop arithmetic comparisons

7 N F

M summer

#1/bin/bash Initializing sum to O

# sum all numbers passed to script
while loop - run loop while the variable

sum=0 .
while [ $# -gt @ ] ; do (—/— $# IS greater than O

echo "newNum=$1"

echo "sum=$sum" - $# = number of parameters in exec call
echo nmn
shift
done - shift = kick out $1 and shift rest down
O 0O Terminal — bash — 46x19 (le $| 6 $2; $2 6 $3’ $3 6 $4’ )
tuckernuck:scripts alf$ ./summer =]
tuckernuck:scripts alf$ ./summer 10 :
Come10 - arithmetic comparisons:
tuckernuck:scripts alf$ ./summer 10 -4 9 17 —|'t <
newNum=10
sum=10 _gt >
i _le o
newNum=9 Nels e
su:::IS g 2 mpRE
newNum=17 U _eq g%
sum=32 4 -Nne ':

tuckernuck:scripts alf$ [| 45



Script 4: oracle

1f /else statement

nesting

N N

(o) M oracle

#!/bin/bash
# oracle guessing game

magicNumber=15

if [ $1 -eq $magicNumber ] ; then ———————— i |OOp

echo "You're correct!”
else

if [ $1 -gt $magicNumber ] ; then e nested if loOp

echo "Too high!"
else
echo "Too low!"
fi
fi

N N ™

Terminal — bash — 53x19

tuckernuck:scripts alf$ ./oracle

./oracle: line 7: [: -eq: unary operator expected
./oracle: line 10: [: -gt: unary operator expected
Too low!

tuckernuck:scripts alf$ ./oracle 26

Too high!

tuckernuck:scripts alf$ ./oracle -12

Too low!

tuckernuck:scripts alf$ ./oracle 15

You're correct!

tuckernuck:scripts alf$ ||

- can also use the construct:

i s
Sl S
elif [];then
else

f]

46



Script 5: calculator
case conditional
exlt

N Ca

(o) M calculator

#!/bin/bash

# calculator for integer pairs

4t [ $% ~na 5 1 : then € S3f€gUArd on usage

echo "ERROR - unexpected number of parameters”

echo "Usage: ./calculator <intl> <intZ> <operation>" . : :
exit - ex1t terminates script
fi
case "53" in — Case COndl‘tlona|
"add" | "sum")
z="expr $1 + $2°
s UbErast™) - starts CaS e cndsiESiEie
z="expr $1 - $2°
"maltiply™) - ) terminates pattern match
z="gexpr. $1 \* $2°
"divide") LIl -
e e $1 7 $2° » 5 terminates each case
") v i 6 1)
écho "4 supported operations: (addlsubtractimultiplyldivide)” C: | IS the or Character
echo exit
’e"s"a"(; 3 g (N 1)
- X s the wildcard “catch all
echo $z

47



Script 5: calculator

o N o

Terminal — bash — 56x15

tuckernuck:scripts alf$ ./calculator

ERROR - unexpected number of parameters

Usage: ./calculator <intl> <int2> <operation>
tuckernuck:scripts alf$ ./calculator 7 3 add

10

tuckernuck:scripts alf$ ./calculator 7 3 sum

10

tuckernuck:scripts alf$ ./calculator 7 3 subtract
4

tuckernuck:scripts alf$ ./calculator 7 3 multiply
21

tuckernuck:scripts alf$ ./calculator 7 3 divide

2

tuckernuck:scripts alf$ ||

48



Script 6: stringer

darrays
A A A M stringer
#1/bin/bash Create an array strArray from parameters
# appends ".txt" to all strings other than "virus" r $@ = all parameters passed to bash call

strArray=("$@") J - $$ARRAY[ @] % = array contents

echo "strArray = ${strArray[@]}"

fileArray=0) *-— (Create empty array fileArray

for str in ${strArray[@]} ; do

if [ $str != "virus" ] ; thenm
sz=${#fileArray[@]}

----- For all strings except “virus append txt
fileArray[ expr $sz + 1 J=$str"".txt , 2 P B2
fi and store In fileArray
done ,
echo "fileArray = ${fileArray[@]}" - ${ #ARRAY[@] } =+ dhiligygszs
" M terminates $ dereference string
olole Terminal — bash — 65x11 . S-tr Comparisons:
tuckernuck:scripts alf$ ./stringer good bad ugly =]
strArray = good bad ugly : i equal
fileArray = good.txt bad.txt ugly.txt |
tuckernuck:scripts alf$ ./stringer cleanl virus clean2 clean3 S
si;rArray = cleasl virus c{eanZ gleanB e no-t equal
tuckernuckescrints avfs [ o creand.ut 0 > oreater than
: = less than

-M <S> e NeEchipEg
49



Script 7: filer

infinite loop

Ctrl + C

™ N ™

M filer

#!/bin/bash

# tests whether user supplied strings are files in pwd

..... --—

echo "Please enter a file name to test (Ctrl + C to exit):"
read str
1f [ -f $Str ] s then —
echo "$str is a regular file in pwd"
else
echo "$str is not a regular file in pwd"
fi
echo
done

Pt ™ ™

Terminal — bash — 67x19

tuckernuck:scripts alf$ s =]
backup filer myDirectory stringer -
calculator helloWorld oracle summer

tuckernuck:scripts alfs ./filer

Please enter a file name to test (Ctrl + C to exit):
summer

summer is a regular file in pwd

Please enter a file name to test (Ctrl + C to exit):
winter
winter is not a regular file in pwd

Please enter a file name to test (Ctrl + C to exit):
myDirectory
myDirectory is not a regular file in pwd

Please enter a file name to test (Ctrl + C to exit):
~C
tuckernuck:scripts alf$ ||

read user Input

nfinite loop (CERL 4+ E%6
break)
Read user Input into str

Test if stris a regular file in the
present working directory

/- file comparison operators

-e file exists (may be directory)
-1 file exists (not directory)

-d directory exists

-r file readable

-w file writable

-x file executable

50



Script 8: squarer

iterating Sleep
functions

™ ™ ™

M squarer

#! /bin/bash

# function declarations (— [ )eC|aring a function at top of script

function square{) {

z="expr $1 v $1°
echo $z

) As for main function $1,$2,... are passed variables

# prints square of every eighth number between 56 and 187

start=56 : . :

ctoprtey | C— Setting up the iterative loop
step=08

i=$start

hite [81 4281015 = PerfOrming square using our function
echo "$i x $i = $i2"

sepos 1 sleep 0.5 =05 s pause between prints
- 1="expr 31 + pste : . : .
; ¢ 7 Incrementing loop variable

N N ™

Terminal — bash — 47x10

tuckernuck:scripts alf$ ./squarer B
56 x 56 = 3136 -
64 x 64 = 4096
72 x 72 = 5184
80 x B0 = 6400
88 x 88 = 7744
96 x 96 = 9216 LJ
104 x 104 = 10816 A
tuckernuck:scripts alf$ || v

51



Vi. awk

52



awk

awk Is a programming language Iin Iits own right

Developed at Bell Labs in 70's by Aho,Welinberger, &
Kernighan

Powertful, simple, fast and flexible language

Standard part of most Linux distributions, used primarily
for rapid and efficient line-by-line text processing

awk =B
Programming

o5



Why awk?

“Forget awk, I'll just use vi / emacs / Notepad!”

OK, good luck..,
- extract the third column of this 50,000 line file

- divide the second field of each line by the seventh, and

save results in csv format
- extract every |5th line of this file and invert the field
ordering to run from last to first

awk can do these things (and many others!) extremely
efficiently and quickly using “one liner” commands

integrates seamlessly into bash shell cat <file> |
B S

oreat power using only a handful of commands

5



awk basics

Rudimentary awk, comprehensive beginner's tutorial at:
nttp//www.grymoire.com/Unix/ Awk.html

Anatomy of an awk program

awk 'BEGIN { } <-—e [0 stuff before starting [optional]
{ } <-—e | Ine-by-line processing

=N { }' = Doistuji aiter encrei=iliEicIE S

INnFile > outkile €—————— Read from inFile, write to outFile

Can place within a script, or enter directly into terminal

White space doesn't matter

515


http://www.grymoire.com/Unix/Awk.html

awk basics

Alternatively, can pipe input from terminal

SiRiEle | awlik BEGIN { ... }
()
ENIDE o Iy
> outkile

Omit “> outkile” to output directly to terminal

Use ">>" Instead of ">"to append rather than overwrite

cat inFile > awk 'BEGIN { ... }
L
ENIDIE
>> outkile

56



What goes in the { }?

Commands perform line-by-line text processing
Assignment of internal awk variables

Flow control and loops

Pulling in of bash variables from surrounding script
Printing to terminal or file

Basic arithmetic

S



.

Ibash + awk] script example

—xtract the x,y,z coordinates of peptide atoms from pdb
formatted files

into coords| | -3].txt

Concatenate coords| | -3].txt into coords_concat.txt

Use awk to perform text

~ .

peptidel.pdb

Use bash to iterate over files

Drocessing

=] coords1.txt

REMARK GENERATED BY TRJCONY

-----------

TITLE Protein in water t= B6.66060606
REMARK THIS IS & SIMULATION BOX

CRYST1 360.066 36.000 360.000 ©90.06 90.06 96.660 P 1 1
MODEL 1

ATOM 1 CH3 ACE 1 12.718 13.558 14.666 1.60 0.60
ATOM 2 C ACE 1 13.948 13.7688 13.200 1.66 ©.60
ATOM 3 0 ACE 1 13.818 13.698 11.986 1.66 0.60
ATOM 4 N ALA 2 15.1486 14.898 13.716 1.60 0.60
ATOM 5 CA ALA 2 15.476 14.598 15.836 1.66 0.60
ATOM 6 CB ALA 2 15.8286 13.378 15.586 1.68 0.60
ATOM 7 C  ALA 2 16.686 15.498 14.878 1.60 0.60
ATOM g 0 ALA 2 17.666 15.136 14.2060 1.66 0.60
ATOM 9 N NAC 3 16.768 16.626 15.576 1.66 0.60
ATOM 18 CH3 NAC 3 15.7686 17.299 16.3686 1.60 0.60
TER

ENDMDL

12.718 13.556 14.660
13.948 13.768 13.260
13.818 13.698 11.93@
15.148 14.898 13.718
15.478 14.598 15.636
15.628 13.378 15.83@
16.688 15.498 14.878
17.668 15.138 14.260
16.768 16.628 15.57@
15.768 17.298 16.360

58



Ibash + awk] script example

(o) M awker

#!/bin/bash . .
setting up In and out files

# setting up file iteration : : ]
setting up teration

inFile_name=peptide

srsssssnenenfTesevennne Sevene

outFile_name=coords |n|t|a||Z|ng COﬂcat ﬂ|e

LR g e e

start=1

stop=3 . :

step=1 awking each file In turn
if [ -e SoutFile_name""_concat.SoutFile suff 1 ; then - printf is formatted print

fi - formatting like Matlab

- $n are field codes

- NRis a special variable
for number of records

= number of lines

# iterating over files

i=8start

awk '{
if (NR > 5 & NR < 16) {
printf("%8.3f%8.3f%8.3f\n",$6,%7,38)

¥ /cat each file into concat file

Srssssssesen TR S enenene CRsnesesesenes TR Cenennne

srsnsssssnenenfTicenennne sesssnsssnsnenfTessnnnne

i="expr $i + S$step’
done \ ' .
= INCrement 1terator

S



Ibash + awk] script example

-

| coords_concat.txt

12.710 13.550 14.
13.940 13.780 13.
13.810 13.6990 11.
15.140 14.090 13.
15.470 14.590 15.
15.820 13.370 15.
16.680 15.490 14.
17.650 15.130 14.
16.760 16.620 15.
15.700 17.299 16.
12.718 13.940 14.
13.912 13.876 13.
13.779 13.427 12.
15.126 14.114 13.
15.559 14.482 14.
15.903 13.162 15.
16.707 15.479 14.
17.719 15.207 14.
16.661 16.648 15.
15.603 17.318 16.
12.710 13.615 13.
13.968 13.676 13.
13.908 13.358 11.
15.136 14.106 13.
15.468 14.683 14.
15.388 13.763 16.
16.738 15.517 14.
17.472 15.395 13.
16.923 16.519 15.
15.969 17.005 16.

Doing this [by hand / in

scale would be extremely tedious a

060
200
980
710
030
880
870
200
570
300
128
177
038
654
993
687
919
290
569
306
995
137
952
627
911
136
857
877
721
693

SdaE] i el [

atlab] at any significant

glelisiane]e circin:!

60



