Module 3: OOF2 Walkthrough

Stresses on a Bimetallic Strip

In this example, we shall use OOF2 to use the finite element method to analyze the physical behavior of a bimetallic strip. The strip is comprised of two sheets of metal bonded together at an interface, as indicated below. The properties and geometry of the strip in the dimension coming out of the plane of the paper are assumed to be quasi-infinite uniform, allowing a two-dimensional treatment of this system. In this system, the upper (red) layer is copper, bonded to a lower (blue) layer of carbon steel.

Figure 1: Bimetallic strip

The differential thermal expansion of the two metals upon heating or cooling causes structural deformation of the strip, and is exploited in thermostatic feedback loops in domestic ovens and other appliances to maintain fixed chamber temperatures.

We shall analyze the physical and mechanical behavior of the strip upon heating. Of particular interest is the interfacial stress, which—if it becomes too large—can lead to delamination of the two metals, causing the bimetallic strip to fail and compromising the thermostatic feedback loop.

This guide is neither exhaustive nor comprehensive. To see the full range of OOF2 features, and explore the details of the features exhibited within this guide, please see the OOF2 Manual. Hovering your cursor over the options in the OOF2 GUI will also provide on-demand information about the various options. Alternatively, you can run any of the interactive tutorials. The necessary example input files are installed in /class/mse404ela/OOF2/examples (which is an automount directory; you will need to access the directory first in order to read the files).

We will access OOF2 using the local EWS installation; please load

module load OOF2

to proceed. Alternatively, you can use OOF2 via the web implementation at nanoHUB.org. This requires an active nanoHUB account (free), and note that you must use the "Upload/Download" dialog to upload an image file.

N.B. As we have seen, OOF2 has no predefined units, and we may use any consistent units of our choosing. Throughout this guide we will employ the SI convention (m, kg, Pa, J, N, etc.).

References

- OOF2:
 - OOF2: www.ctcms.nist.gov/oof/oof2/
 - OOF2 tutorial: www.ctcms.nist.gov/~rlua/redblue/
- nanoHUB:
 - Nanohub: nanohub.org
- Finite Element Method:

- Olek C Zienkiewicz, Robert L Taylor, J.Z. Zhu, *The Finite Element Method: Its Basis and Fundamentals*, Butterworth-Heinemann (2005).
- Reid et al. "Modelling Microstructures with OOF2" Int. J. Materials and Product Technology 35, 361 (2009).

Step-by-step simulation guide

- 1. Prepare files, load module. First, load OOF2 with module load OOF2. Next create your own local directory for your work, including today's walkthrough. From /class/mse404ela/OOF2/Walkthrough, copy the file bimetallic.png into your local directory.
- 2. Start OOF2. After changing into your local directory, run oof2.

It is instructive to spend a moment reading the text in the OOF2 welcome pane describing the basic OOF2 workflow. N.B. You can save your work as a Python log using File | Save. It is strongly recommended that you save frequently to a Python log file to checkpoint your work.

3. Create microstructure. Change to the Microstructure task in the main OOF2 window. Click "New from Image File" in the resulting window.

Figure 2: *Microstructure task*

Select bimetallic.png and set the height to 0.01 m.

Click OK, and the microstructure window will now contain your uploaded image data.

From the dropdown Windows menu, select Graphics and click New to see your uploaded image. To see your bitmap, go to the Layer menu, select New, and choose Image as the Category. After you add this layer, you should see your bitmap image.

4. **Build Pixel Groups.** We shall now inform OOF2 that we have two separate materials, by forming "Pixel Groups".

From the Toolbox menu, select Pixel Selection, and in the Method menu select Color.

 Load Image 	and create Microstructure
	Directory: ela/OOF2/Walkthrough/ V
	Seack Rext
	bimetallic.png
filename =	
	show hidden files
microstructure_name =	automatic
height =	0.01
width =	automatic
	ØCancel

Figure 3: *Load image*

X00F2	_ 🗆 ×		
File Settings Windows OrientationMa	p Help		
Task: ┢ 🔶 Microstr	ructure 🔽 🚽		
Microstructure= bimetallic.tiff			
New New from Image	from Image File 📄 New from Orientation Map		
📝 Rename 🗔 Copy	. 😭 Delete 🔒 Save		
rMicrostructure Info rPixel Groups			
Pixel size: 809x77 Physical size: 0.105064935065x Images: Delete Delete All Meshable	Add Remove Clear Info		

Figure 4: Uploaded microstructure

Figure 5: Graphics window

×OOF2 Graphics 1 File Layer Settings Windows			_ 🗆 X
Toolbox: Pixel Selection	time: 🛶 📦 💷	0	max
Method: Color			*
DeltaRGB			
delta_red =			
delta_green =			
delta_blue =			
🔶 Undo 🛛 🥐 Redo 🛛 🍓 C			
rHistory			
down			
up			min
🐝 Prev 💦 Repeat 💌			Clear Mark
Lavers		"	
Show Map Freeze What		How	<u> </u>
			•

Figure 6: Pixel selection

Click on the upper red layer. A value will appear in the Selection Size variable box defining the size of the selected layer.

×OOF2 Graphics 1 File Layer Settings Windows			_ 🗆 ×
Toolbox: Pixel Selection	time: 🗼 📦 🔲	0	max
DeltaRGB			<u>^</u>
range = delta_red =			
delta_green =			
delta_blue =			
🔶 Undo 🛛 🥐 Redo 🛛 🔒 C			
rHistory-	:		
down			
up 0.0730279 0.00			
🐗 Prev 📑 Repeat			min
Selection size: 40450			
· ·	4		Clear Mark
Layers	·		
Show Map Freeze What		How	<u>^</u>

Figure 7: Pixel selection with selection size

Drag the "Graphics 1" window out of the way and return to the main OOF2 window. Click on New... under Pixel Groups and name the selected group "upper". Click OK.

You will see that we have established a new Pixel Group.

Click the Add button to the right of the window to add our selected pixels to this group.

Repeat this process for the bottom layer, to generate a pixel group named "lower".

5. Build material properties. We shall now input the physical properties for each layer in the strip—copper (upper), and carbon steel (lower). In the main OOF2 window, use the Task dropdown to navigate to the Materials pane.

Click New... to add a new material. Name the materials "copper" and "steel", and leave their specification as bulk.

We shall now assign the following properties to the two materials:

🗙 Import/Exp 💶 🗆	X00F2	_ 🗆 ×
Upload or download	File Settings Windows OrientationMap	Help
file or clipboard.	Task: 🙌 🛶 Microstructure 🔽 🛶 剩	
×00F2 Grag	Microstructure= bimetallic.tiff	
File Layer Se	New New from Image New from Image File New from Orier	ntation Map
Popups Toolbox: Pixel	Rename 🕞 Copy 😭 Delete 🔂 Save	
× OOF; range = De File w del del Image y Undo del 00F, Wi +listory- 000F, Gi down (sourc) up 0.07302 up	Microstructure Info Pixel size: 809x77 Physical size: 0.105964935065x Images: Images: Mex Copy Delete Delete All Meshable	Add Remove Clear Info
(delta (0.07: Selection size: NCreate new pixel of name = ☐ upper		×

Figure 8: Defining a pixel group

XOOF2		_ 🗆 ×
File Settings Windows Orient	ationMap	Help
Task: ┢ 🔶	Microstructure	
Microstru	cture=_bimetallic.tiff	
New 📄 New from Image	New from Image File New from Orien	tation Map
📝 Rename 🗔	Copy 😭 Delete 🗔 Save	
rMicrostructure Info	rPixel Groups	
Pixel size: 809x77	New upper (0 pixels, meshable)	Add
Physical size: 0.105064935065x0.01	Rename	Remove
Images:	Сору	Clear
bimetallic.tiff	Delete	Info
<none></none>	Delete All	
	☑ Meshable	

Figure 9: New pixel group info in main OOF2 window

×00F2		
File Settings Windows Orienta	ationMap	Help
Task: ┢ 🔶	Microstructure	
Microstru	cture= bimeta	ilic.tiff 🛛 🗸 🗸
New 📄 New from Image	New from Ir	mage File 📄 New from Orientation Map
📝 Rename 🕠	Сору 🗑	Delete 🔚 Save
rMicrostructure Info	rPixel Groups-	
Pixel size: 809x77	New	upper (40450 pixels, meshal Add
Physical size: 0.105064935065x0.01	Rename	Remove
Images:	Сору	Clear
bimetallic tiff	Delete	Info
<pre>Orientation Map file: <none></none></pre>	Delete All	
	🗹 Meshable	

Figure 10: Pixel group added

×00F2		_ _ ×	
File Settings Windows Orienta	ationMap	Help	
Task: ┢ 🔶	Microstructure		
Microstructure= bimetallic.tiff			
New New from Image	New from Ir	mage File 📄 New from Orientation Map	
📝 Rename 🗓	Copy 🗑	Delete 🔒 Save	
rMicrostructure Info-	_r Pixel Groups-		
Pixel size: 809x77	New	lower (21034 pixels, meshab Add	
Physical size: 0.105064935065x0.01	Rename	upper (40450 pixels, meshał Remove	
Images:	Сору	Clear	
bimetallic.tiff Orientation Map file: <none></none>	Delete	₹ Info	
	Delete All		
	🗹 Meshable		

Figure 11: After adding "lower"

X00F2			
File Settings Windows OrientationMap	Help		
Task: 🙌 🔶 Materials 🔍 🌩 剑			
Propertyr	Material		
🗓 Copy 📝 Parametrize 簹 Delete	New Rename Copy Delete 🖬 Save		
Color	•		
▶ Mechanical	,		
▶ Thermal			
▶ Electric			
▶ Couplings			
Orientation	Remove Property from Material		
OrientationMap 💽	Accian Material to Divolo		
<u> </u>	Assign Material to Pixels		
Add Property to Material 📦	Remove Materials from Pixels		

Figure 12: Materials pane

× OOF2	
File Settings Windows OrientationMap	Help
Task: ┢ 🔶 Mat	erials 🔽 🔿 📦
rPropertyr^	laterial-
🕼 Copy 📝 Parametrize 😭 Delete [🗋 New 🍞 Rename 😳 Copy 😭 Delete 🔚 Save
Color	opper 👻
▶ Mechanical	
▶ Thermal	
▶ Electric	
×New material	<
name = 🗹 steel	Remove Property from Material
material_type = bulk	
	Assign Material to Pixels
	Remove Materials from Pixels

Figure 13: Naming new materials

Property	Copper	Steel
Young's modulus E [GPa]	117	200
Poisson's ratio ν	0.33	0.27
Thermal conductivity $k [W/m^{\circ}C]$	390	41
Thermal expansion coefficient α_T	51×10^{-6}	36×10^{-6}
at $T_0 = 0^{\circ} C [K^{-1}]$		
Color [R, G, B]	[1,0,0]	[0,0,1]

Let's first consider copper.

To specify the Young's modulus, in the Property window on the left click the triangle to the left of Mechanical, followed by the triangle to the left of Elasticity, then highlight the word Isotropic. At the top of the Property window, click Copy..., name the property "Young_copper" and click OK.

×OOF2 File Settings Windows OrientationMap	[] 	⊒ ≯ ielp
Task: ┢ 🔶 M	aterials 🔽 🔿	
rProperty Copy Parametrize Solution Color	Material- New Rename Copy Delete Sav	/e
 ✓ Mechanical ✓ Elasticity Isotropic > Anisotropic 		
🗙 Copy property Mechani 💷 🗅	Remove Property from Material	
new_name = Young_copper	Assign Material to Pixels Remove Materials from Pixels	

Figure 14: Isotropic elasticity

Select Young_copper and click Parametrize... and in the drop down menu, select E and nu. Input the values for Young's modulus and Poisson's ratio (ν) from the table above and click OK.

Figure 15: Elasticity parameterization

Follow a similar procedure to add the other three properties in the table, accessing the pertinent properties as follows:

Property	Selection
Thermal conductivity, k	Thermal -> Conductivity -> Isotropic
Thermal expansion coefficient, α_T at $T_0 = 0^{\circ}$ C	Couplings -> Thermal Expansion ->
	Isotropic
Color	Color

6. Attach materials properties. Select copper in the Material column on the right hand side of the main OOF2 window. Select each of the four materials properties we assigned in turn (Young + Poisson, k, alpha, color) in the Property column on the left side and click Add Property to Material.

Figure 16: Adding properties to material

Repeat for steel.

7. Assign materials to pixel groups. Select copper in the Material column and click Assign Material to Pixels.... Choose upper to make the upper layer of the bimetallic strip copper.

Figure 17: Assigning material to pixels

Follow an analogous process to make the lower layer steel.

8. Generate skeleton. In OOF2, we first create a "skeleton" of finite elements that we subsequently use to create the mesh. The skeleton is purely geometric, whereas the mesh contains element properties and basis functions.

X OOF2		_ 🗆 ×
File Settings Windows OrientationMap		Help
Task: 🙌 🔶 Skeleton		▼ 🔷 斗
Microstructure= bimetallic.t	iff 🛛 🔽 s	ikeleton= 🛛 💌
New Simple Auto Rer	name 🔘	Copy 😭 Delete 🔛 Save
Skeleton Status	rSkeleton Mo	dification
No skeleton selected.	method: Re	fine
	toracto -	Heterogeneous Elements 🛛 🗸
	targets -	threshold = 0.9
	criterion =	Unconditional 🗸 🗸
		Trisection
	degree =	rule_set = conservative
	alpha =	0.3
	🗼 Prev	Next 🧼
	🥎 <u>(</u>	Indo 🕐 <u>R</u> edo

Figure 18: Skeleton pane

In the main OOF2 window, use the Task dropdown to navigate to the Skeleton pane.

Click New... to specify a new skeleton, and set the number of x elements to 50, the number of y elements to 11, the mesh type to TriSkeleton, and the arrangement to Liberal. Click OK.

×New skeleton		_ 🗆 X
name =	automatic	
x_elements =	50	
y_elements =	11	
*	TriSkeleton	
skeleton geometry =	arrangement = liberal	[▼]
skeleten_geometry	left_right_periodicity = 🔲 false	
	top_bottom_periodicity = 🗌 false	
	<u>ерок</u>	<mark>∭</mark> <u>C</u> ancel

Figure 19: New skeleton

The Graphics window will now display your initial skeleton over your microstructure. To see your skeleton, go to the Layer menu, select New, and choose Skeleton as the Category. After you add this layer, you should see your skeleton on top of your bitmap.

Careful inspection of the skeleton reveals that there are some "heterogeneous elements" containing both copper and steel within their area, and there are too few elements near the interface where we expect large variation in properties.

We shall perform a number of rounds of skeleton refinement to generate more reasonable domain decomposition using the Skeleton Modification tools in the right hand column of the main OOF2 window.

These tools attempt to minimize the skeleton energy, where the energy is defined as a linear combination of a homogeneity and a shape term:

$$E = \alpha E_{\text{homogeneous}} + (1 - \alpha) E_{\text{shape}}$$

X OOF2		_ _ X
File Settings Windows OrientationMap		Help
Task: ┢ 🖕 Skeleton	[▼	►
Microstructure= bimetallic.tiff	Skeleton= s	skeleton 🔽
New Simple Auto 📝 Rename	. 🕞 Copy	. 😭 Delete 📊 Save
Skeleton Status	rSkeleton Mo	odification
No. of Nodes: 612	method: Ar	nneal 🛌 🗐 🔽
No. of Elements: 1100 No. of triangles: 1100	targets =	All Nodes 🗸 🗸
No. of quads: 0 Loft-Dight Poriodicity: Ealso	criterion =	Average Energy 💌
Top-Bottom Periodicity: False		alpha = 0.8
Homogeneity Index: 0.974025974026	T =	0.0
	delta =	1.0
	iteration -	Fixed Iterations
	literation -	iterations = 250
	(h Draul	All Nort and
	- Prev	Next W
	🥎 <u>U</u>	Indo 🕐 <u>R</u> edo

Figure 20: End result of making skeleton

Figure 21: Skeleton in graphics window

Heterogeneous elements and those with high aspect ratios have high energies. The parameter α (not to be confused with thermal expansion!) controls the trade-off between these contributions.

(i) From the method menu, select Anneal. This process attempts to make the elements more homogenous using a random skeleton refinement protocol similar to simulated annealing. Use as a criterion "Average Energy" with alpha = 0.9 and specify 100 iterations. T is the effective temperature, with T=0 permitting only downhill moves in energy.

× OOF2		
File Settings Windows OrientationMap		Hel
Task: 🙀 🔶 Skeleton	<	
Microstructure= bimetallic.tiff	Skeleton= sk	eleton 🔽
New Simple Auto Rename	🗇 Copy	😭 Delete 📊 Save
Skeleton Status	Skeleton Mod	fication-
No. of Nodes: 612	method: Ann	eal 🗸
No. of Flements: 1100 No. of triangles: 1100	targets =	All Nodes 🗸 🗸
No. of quads: 0 Left-Right Periodicity: False	criterion =	Average Energy
Top-Bottom Periodicity: False		alpha =
Homogeneity Index: 0.974025974026	T = 0	0.0
	delta = 1	.0
	i itaratian -	Fixed Iterations
	iteration =i	terations = 100
		,
	🖕 Prev	A Next 📦
		do 🛛 🥀 Redo
l	1 1 2 11	& Head

Figure 22: Skeleton anneal

Click OK to perform the annealing procedure. You can watch the skeleton evolve in the Graphics window, and the numerical convergence in the Messages and Activity window.

In the Graphics window, we can access Zoom options via the dropdown Settings menu. Zooming in on the skeleton shows that we have improved alignment of the mesh with the phase boundaries.

Figure 23: Annealed skeleton

- (ii) From the method menu, select Swap Edges to perform a random flipping of element edges in an effort to achieve better phase boundary alignment. Use alpha = 0.8. Click OK.
- (iii) From the method menu, select "Smooth" to adjust node locations. Use alpha = 0.8 and specify 50 iterations with T=0. Click OK.

The skeleton is well aligned with the phase boundary, and the homogeneity index is 0.99 indicating excellent alignment with phase boundaries.

X00F2	
File Settings Windows OrientationMap	Help
Task: ┢ 🔶 Skeletor	n 🔽 🔶 剩
Microstructure= bimetallic.tiff	▼ Skeleton= skeleton ▼
New Simple Auto 📝 F	Rename 🕞 Copy 🥞 Delete 📊 Save
Skeleton Status No. of Nodes: 612 No. of Elements: 1100 No. of triangles: 1100	Skeleton Modification method: Swap Edges
No. of quads: 0 Left-Right Periodicity: False Top-Bottom Periodicity: False Homogeneity Index: 0.986924795553	criterion = Average Energy alpha =0.8
	Prev Control Image: Second S

Figure 24: Swapping edges

Figure 25: Swapped edges skeleton

×00F2		. 🗆 🗡
File Settings Windows OrientationMap		Help
Task: 🎼 🔶 Skeleton		
Microstructure= bimetallic.tiff	Skeleton= skeleton 💌	
New Simple Auto Rename	🗊 Copy 😭 Delete 🗔 Save	
rSkeleton Status	Skeleton Modification	
No. of Nodes: 612	method: Smooth	- [+
No. of triangles: 1100	targets = All Nodes	-
No. of quads: 0	Average Energy	\
Top-Bottom Periodicity: False	alpha = 0.8	
Homogeneity Index: 0.986924795553	T = 0.0	
	Fixed Iterations	
	iterations = 50	
	🔶 Prev 🖉 OK Ne	xt 📣
	🔶 Undo 🛛 🕐 Redo	

Figure 26: Smoothing

Figure 27: Smoothed skeleton

(*N.B.* We will not do this here to save computational time, but we can use the "Refine" method to increase the number of elements. Set the targets to "All Elements", criterion to "Unconditional", degree to "Bisection", rule set to "Liberal" and alpha to 0.8. Click OK.){ width=50% }

9. Generate mesh. In the main OOF2 window, use the Task dropdown to navigate to the FE Mesh pane.

Click New... to generate a mesh based on our skeleton. Leave mapping order and interpolation order as 1. (For higher accuracy—at the expense of longer computation times—we may wish to select 2.) Click OK.

🗙 Create a new	mesh	_ 🗆 🗙
name =	🔲 automatic	
	mapping order	1 🔽
	interpolation order:	1 🛛 🔽
element_types =	2-cornered element:	D2_2 [▼
	3-cornered element:	Т3_3 🔽
	4-cornered element:	Q4_4 ▼
	<u>ер</u> к	<mark>∭</mark> <u>C</u> ancel

Figure 28: New mesh

We now have a mesh with properties listed in the left column of the FE Mesh window.

×00F2				_ 🗆 ×
File Settings Window	s OrientationMap			Help
	Task: 🙀 🖕 F	E Mesh	▼ 🛶 斗	
Microstruc	ture= bimetallic.tiff	▼ Skeleton=	skeleton 🔽 Mesh	= mesh 🕶
Mesh Information	New 📝 Rename.	🖸 Copy	Delete 🗔 S	ave
Status: Unsolved No. of Nodes: U No. of Elements: 2 cornered elemen 3 cornered elemen 5.subproblems default	512 1222 ht: D2_2 (12 ht: T3_3 (11) ht: 04_4 (6)	22) (00)	Method: Rel	uild (♥
New	Rename	Edit	*	
Copy	Info	🔋 Delete	🗼 Prev	🦪 <u>o</u> κ Next 📦

Figure 29: Mesh properties

10. Specify equations. In the main OOF2 window, use the Task dropdown to navigate to the Fields and Equations pane.

In the Fields column on the left, tick all three boxes (defined, active, in-plane) in the rows for Temperature and Displacement.

In the Equations column on the right, tick the boxes next to Heat Eqn and Force Balance.

× OOF2	_ 8 ×
File Settings Windows OrientationMap	Help
Task: 🙌 🔶 Fields	s & Equations 🛛 🔹 📦
Microstructure	skeleton ▼ Mesh= mesh ▼ SubProblem= default ▼ Equations Heat Eqn □ active Plane Heat Flux □ active Plane Stress □ active Coulomb Eqn □ active InPlanePolarization □ active
Conv Field State	Conv Equation State
copy rield blace	copy Equation States

Figure 30: Equations selections

11. **Specify boundary conditions.** In the main OOF2 window, use the Task dropdown to navigate to the Boundary Conditions pane.

COOF2	_ 8 ×
File Settings Windows OrientationMap	Help
Task: 🙌 🔶 Boundary Conditions 🔽 📦	
Microstructure= bimetallic.tiff 🔹 Skeleton= skeleton 💌 Mesh= mesh 🗸	
Condition Rename Edit Copy Copy Ali Delete	
Enable Name - Boundary Condition	
•	
Υ. Υ.	
KImport/Export XOOF2 Messag XOOF2 XOOF2 Graphic XOOF2	2 Activity

Figure 31: Boundary conditions pane

Click New.... Using Dirichlet boundary conditions for the temperature field, specify the right boundary to 450° C.

Following the same protocol, specify the left boundary to be 0° C.

Following a similar protocol, fix the right boundary y-displacement to zero.

Following a similar protocol, fix the right boundary x-displacement to zero.

We can see the specified BCs in the main OOF2 window.

12. Solving. In the main OOF2 window, use the Task dropdown to navigate to the Solver pane.

XNew Boundary Condition		
name =	automatic	
	Dirichlet	[▼]
	field =	Temperature 🛛 🗸 🗸
	field_component =	(Not Applicable)
	equation =	Heat_Eqn 🛛 🗨
condition =	eqn_component =	(Not Applicable)
	profile –	Constant Profile 🛛 🔻
	prome -	value = 450.0
	boundary =	right 🗸 🗸
	<u> «Э</u> ок	Apply XCancel

Figure 32: New boundary condition

🗙 New Bou	×New Boundary Condition								
name =	automatic								
	Dirichlet		[▼						
	field =	Displacement	•						
	field_component =	field_component = y							
	equation =	e 🔽							
condition -	eqn_component =	•							
	profile =	Constant Prof	ile 🛛 🗖						
	prome –	value = 0.0							
	boundary =	right							
	<u> «"О</u> К	Apply	<u> (C</u> ancel						

Figure 33: *y displacement boundary*

×00F2	2			_ 🗆 X				
File Se	ettings W	indows Orie	entationMap	Help				
Task: 🙀 🔶 Boundary Conditions 🔽 🐳								
	Microstructure= bimetallic.tiff V Skeleton= skeleton V Mesh= mesh V							
Conalu	on	New	Rename Edit Copy Copy All Delete					
Enable	Name 🕶	Boundary	Condition	1				
2	bc	right	Dirichlet / Temperature[] / Heat_Eqn[] / 450.0					
	bc<2>	left	Diridalet / Temperature[] / Heat_Eqn[] / 0.0					
	bc<3>	right	Dirichlet / Displacement[x] / Force_Balance[x] / 0.0					
2	bc<4>	right	Dirichlet / Displacement[y] / Force_Balance[y] / 0.0					
i								

Figure 34: Boundary condition summary

<mark>×OOF2</mark> File Settings Windows C	rientationMa	ар			_ ₽ > Help
	Task: ┢	🖕 Solver	[▼		
Microstructur	e=bimetalli	ic.tiff 🛛 🗸 Sk	eleton=_skeleton	▼ Mesh= mesh	•
Order Solve? Subproblem	Solver				
0 🗹 default	<none></none>				
🛉 Set 🗓	Copy	Cop	y All	Remove 🛔	Remove All
🙀 First	< Earlier		Ľ	ater 📦	Last 📦
rInitialization					
Field or BC Initializer		× Specify Solv	er 📘		_ 🗆 X
Temperature			Basic		•
Displacement			time_stepper =	Static	[•]
Set	5	solver_mode =		Iterative	•
- J	Apply		matrix_method =	tolerance =	1e-13
				max_iterations =	1000
current time= 0.0				<u> «"о</u> к	<u>X</u> Cancel
end time=					
XImport/Exp XOOE2	Mess X	00F2	X OOF2 Gran	OOF2 Activ	X Specify Sol

Figure 35: Solver pane

Select the first line in the Solver pane and click "Set Solver" to specify the solver options. Select "Advanced", choose BiCGStab (stabilized biconjugate gradient solver) and set tolerance to 1e-9, max_iterations to 100,000 and click OK.

	Speci	fy Solver		×					
	Advanced								
	time_stepper =	Static							
	nonlinear_solver =	None		A V					
		BiCGStab		▲ ▼					
	symmetric_solver =	preconditioner =	IncompleteLUT	A V					
solver_mode =		tolerance =	1e-09						
		max_iterations =	100000						
		BiCGStab		 ▼					
	asymmetric_solver =	preconditioner =	IncompleteLUT	A V					
	asymmetric_solver =	tolerance =	1e-09						
		max_iterations =	100000						
			🦪 ОК 🔋 🖲 Са	ncel					

Figure 36: Solver options

Back in the main pane, click Solve in the bottom right hand corner to solve the FEM problem. This may take seconds to minutes. We can watch the progress in the Messages and Activity windows.

13. Visualize result. Switch over to the Graphics window. Add the mesh layer to see the solution, with Layer, New, Mesh as the Category. You will see three layers—the micrograph, the initial skeleton, and the final mesh.

To better visualize the final mesh, uncheck the skeleton in the Layers menu at the bottom of the window.

As we may have anticipated, the larger thermal expansion coefficient of the copper relative to the steel has caused the strip to bend downwards under the applied thermal gradient.

×00	F2 G	raphics	5 1 				- 8 ×
Toolb	ox: V	iewer	s windows	time: 🧼 📦 💷		0	max
rPosit Pix rZoor Zoon	ion Inf el: iical: n In n Facto Ctrl-	Formation	Zoom in oom out				min
		° Canva	s Info	4		*	Clear Mark
Layer	s						
Show	Мар	Freeze	What		How		
4	0		Mesh(mesh)		MeshEdgeDisplay		
1	0		Skeleton(skele	ion)	SkeletonEdgeDisplay		
1	0		Image(bimetalli	c.tiff)	BitmapDisplayMethod		

Figure 37: Graphics window with multiple layers

×00	F2 G	raphics	1 Windows			_ & ×
Toolbo	ox: V	liewer	-	time: 🗼 📦 💷	0	max
Positi Pixe Physi Zoom Zoom	ion Int el: ical: In In Facti Ctrl-	formation	zoom in oom out			min Clear Mark
Layers		1			1	
Show	Мар	Freeze	What		How	
Ľ	0		Mesn(mesh)		MesnEdgeDisplay	
4	0		Skeleton(skele	ton)	SkeletonEdgeDisplay	
2	0		Image(bimetalli	c.tiff)	BitmapDisplayMethod	

Figure 38: Graphics window without skeleton

Depending on the details of your skeleton and mesh, your bimetallic strip may or may not bend as much as this. (In a more detailed study, we should, of course, check how hpr-refinement affects our results.)

We shall now visualize the temperature gradient over the final mesh. From the Layer dropdown menu, select New, and select category Mesh.

XOOF2 Gra	aphics Layer Editor s Windows	
Displayed Ob	ject	Display Methods
category =	Mesh 두	
	bimetallic.tiff	
object =	skeleton 🗸 🔻	
	mesh 🛛 🗸	
		New 📝 Edit 🗓 Copy 🔋 Delete
New Laye	r	Destination= Graphics_1 🔽 Send 📦

Figure 39: Graphics layer editor

Change Element Edges to Filled Contour. Specify field to be Temperature, and where to be actual. Click OK.

XNew Dis	splay Metho	d for Mesh mesh
	Filled Contou	r [▼
	when =	Alatest>
		Field 🗸
method =	what =	Component
		field = Temperature 🗸 🗸
		component = (Not Applicable)
meened	where =	actual
	min =	automatic
	max =	automatic
	levels =	11
	nbins =	5
	colormap =	Thermal 🗸
		<u> </u>

Figure 40: *Filled contour*

Back in the Graphics window, we now have the terminal temperature gradient overlaid on our final deformed mesh.

- 14. Analysis. We will now proceed to extract some numerical results. In the main OOF2 window, use the Task dropdown to navigate to the Analysis pane.
 - (i) First we shall look at the temperature profile in the final structure.

Specify in the Output menu, field to be Temperature, in the Sampling menu, x_points = 10 and y_points = 10, and in the Destination menu the Message Window for output.

X OO File	F2 G Layer	raphics Setting	s 1 Nindows				_ # X
Toolb	ox: V	'iewer		time: 🐳 📦 🗔		0	450
rPosit Pix rZoor ⊙ Zoorr	ion Inf el: iical: In In Facto Shiff	formation	Lut C Fill Zoom in oom out				0 Clear Mark
Layers	5						
Show	Мар	Freeze	What		How		-
4	\bigcirc		Mesh(mesh)		MeshEdgeDisplay		
	\bigcirc		Skeleton(skele	ton)	SkeletonEdgeDisplay		×
2	۲		Mesh(mesh)		FilledContourDisplay(1	emperature)	
2	0		lmage(bimetalli	c.tiff)	BitmapDisplayMethod		
XIm	port	Exp	XOOF2 Mess.	×00F2	XOOF2 ActivXO	0F2 Grap ×00	F2 Grap

Figure 41: Graphics layer with temperature gradient

(Alternatively, we can write to file by clicking New... and download the file to our local machine using the Upload/Download window.) Click Go.

X00F2							
File Settings	Windows	OrientationMa	ар				1
		Task: 🗼	a 🔶 Ana	alysis	[•	• 📦 🐝	
-Output	Microstri	ucture= bimet Time	allic.tiff e: 🧼	▼ Ske <latest></latest>	leton= skele	ton 🔽 Mes	sh= <u>mesh</u> ▼
 Scalar () A 	ggregate				Entire Mes	h	
Field				-			
Component				· ·			
field = component =	= Tempera = (Not Appl	ature icable)		·			
, Operation					Sampling		
Direct Outpu	t				Grid Points	;	
					x_points =	10	
					y_points =	10	
					show_x =	🗹 true	
					show_y =	🗹 true	
Named Analy:	ses		Destination)	,	_	
Crea	te/Delete/e	tc	<message< td=""><td>e Window></td><td>•</td><td>X</td><td>60</td></message<>	e Window>	•	X	60
Current:		v	📄 New	🛛 🗠 Rewi	ind 🔔 Clea	r S	20

Figure 42: Analysis pane

The temperature over a grid is output to the Message window.

(ii) We can also look at properties along a cross section of the final structure.

First create a new layer in the same manner as before. In the Displayed Object column on the left, select category Mesh. In the Display Methods column, click New... and select Material Color. Click OK.

Back in the Graphics window, deselect all Layers except the MeshMaterialDisplay that we just created. From the Toolbox menu in the top left, select Mesh Cross Section and then using your pointer, draw a cross section over the deformed strip. Leave n_points as 50. We will now analyze the temperature at 50 uniformly spaced points along this line.

Switch back to the Analysis window. Set field to temperature, and Domain to Cross

X OOF2 Messages 1	•
File Windows	r
Save	🗹 Error 🗔
# Output: Temperature	
# Domain: EntireMesh	
<pre># Sampling: GridSampleSet(x points=10,y points=10,show x=True,show</pre>	y=True)
# Columns:	
# 1. X	
# 2, Y	
# 3. Temperature	
# time: 0.0	
0.0, 0.0, 0.0	
0.011673881673881673, 0.0, 49.9872549024	
0.023347763347763346, 0.0, 99.9895000954	
0.035021645021645023, 0.0, 149.999789822	
0.046695526695526693, 0.0, 199.980290685	
0.058369408369408363, 0.0, 249.952622887	
0.070043290043290046, 0.0, 299.920352665	
0.081717171717171716, 0.0, 350.053140357	
0 0000010500105006 0 0 400 004560070	

Figure 43: Message window with temperature

× 00F2	2 0	Graphics	; 1								_ & ×
File La	ye	Setting	s Wind	ows							
Toolbox	: [[Mesh Cro	ss Sectio	on	•	tim	ie: 🗼 🔿 🗔		0		max
rSource	_				<u>^</u>					*	
		mesh =	= bimeta	llic.tiff:skeleton:	mesh						
		output =	-								
Cross S	Sec	tion									
current:	: c	s<7>				:				_	:
	L	ine Point	s								
	-	n_p	oints =	50							
	5	how_dist	ance =	☑ true							
points:		show_fra	ction =	🖌 true							
		sh	ow_x =	🗹 true							min
1		ch	ow v -	Di true	-		k.			7	Clear Mark
1 Jawore	_				•	믭			J	<u>.</u>	
Show N	1ap	Freeze	What				How				1
			Mesh(n	nesh)			MeshEdgeDi	splay			
	D		Skeleto	n(skeleton)			SkeletonEdg	eDisplay			
)		Mesh(n	nesh)			FilledContour	Display(Temp	erature)	
2 C	C		Mesh(n	nesh)			MeshMaterial	Display			
			Image(b	pimetallic.tiff)			BitmapDispla	yMethod			¥
VImp	ort	/Export		DE2 Mossad		2	XC	OF2 Activi	ty 🔽	OOF2	Graphic

Figure 44: 50 evenly spaced points

Section. Deselect show_distance and show_fraction since these are unimportant to us, and leave the Destination as the Message Window. Click Go.

×00F2						
File Settings	Windows Orie	ntationMap				
		Task: ┢ 🔶 Ar	nalysis	[▼]	⇒	
-Output-	Microstructure	= bimetallic.tiff Time: 🔄 🐗	▼ Skele	ton= skeleton	Mesh=	mesh 👻
 Scalar () Ag 	gregate			Cross Section	1	
Field					cs<7>	
Component			▼	cross_section	New Cor	ov Edit Rename Re
field = component =	Temperature (Not Applicable)				<u> </u>
Operation-			rSam	pling		
Direct Output	:		Lin sho	e Points Evaluate da ow_distance = now_fraction = show_x =	ata at evenly s ☐ false ☐ false ☑ false	paced points on a line
Named Analys Creat	es e/Delete/etc	Destinatio	n	[▼]	ď	Go
Current:	port XOOE	Messag XO		Clear	Activity	X OOF2 Graphic

Figure 45: Analysis pane

Checking back in the Message window, we find our results.

XOOF2 Messages 1
File Windows
Save
Operation: Direct Output
Output: Temperature
<pre># Domain: CrossSectionDomain(cross section='cs<7>')</pre>
<pre># Sampling: LineSampleSet(n points=50, show distance=False, show fraction=False, show</pre>
Columns:
1. X
2. Y
3. Temperature
time: 0.0
0.0067024182713837895, 0.0048068261787473608, 28.6805173366
0.0067172816794813387, 0.0047087276853035372, 28.7435242179
0.0067321450875788879, 0.0046106291918597136, 28.8065310991
0.006747008495676437, 0.0045125306984158901, 28.8695379804
0.0067618719037739854, 0.0044144322049720665, 28.9325448616
0.0067767353118715346, 0.0043163337115282429, 28.9955517428
0.0067915987199690837, 0.0042182352180844184, 29.0585586241
A AA688A6462128A666329 A AA412A13672464A5949 29 1215655A53

Figure 46: Message window with temperature cross-sections