MODULE 3: FINITE ELEMENT METHOD

Practice: OOF2

I. What is OOF2?

OOF2

OOF: Finite Element Analysis of Microstructures

National Institute of Standards and Technology • U.S. Department of Commerce

http://www.ctcms.nist.gov/oof/oof2/

OOF2

- Object Oriented Finite Element Analysis Tool
- Originally developed in the late 90's at NIST by Craig Carter, Ed Fuller, Andy Roosen, and Steve Langer
- Fundamentally a two-dimensional FEM tool

OOF2 is public domain software created at the National Institute of Standards and Technology (NIST) to investigate the properties of microstructures. The microstructure of a material is the (usually) complex ensemble of polycrystalline grains, second phases, cracks, pores, and other features occurring on length scales large compared to atomic sizes.

At the simplest level, **OOF2** is designed to answer questions like, "I know what this material looks like and what it's made of, but I wonder what would happen if I pull on it in different ways?", or "I have a picture of this stuff and I know that different parts expand more than others as the temperature increases -- I wonder where the stresses are greatest?"

OOF2

Very user-friendly GUI

CLI also available

FREE to the end user!

Useability

Very well documented

http://www.ctcms.nist.gov/~langer/oof2man/

Many tutorials and guides available

http://www.ctcms.nist.gov/~rlua www.ctcms.nist.gov/oof/talks/workshop06/SteveLanger/example.pdf http://nanohub.org/resources/4732

Rollover help within the GUI

Availability

Free download of source code from

http://www.ctcms.nist.gov/oof/oof2/#download

Supported by Linux and Mac OS X, but many pre-reqs

http://www.ctcms.nist.gov/oof/oof2/prerequisites.html

```
Python (2.4 through 2.7)
Magick++
gtk+-2.0 (2.6 or later)
libgnomecanvas2
pygtk2 (2.6 or later)
swig 1.1 build 883
```

```
http://www.python.org
http://www.imagemagick.org/www/Magick++/index.html
http://www.gtk.org/download/
http://directory.fsf.org/graphics/misc/libgnomecanvas.html
http://www.pygtk.org
http://www.swig.org/download.html
```

- Local installation can be tricky
- EWS: module load 00F2

Availability

But...

National Institute of Standards and Technology • U.S. Department of Commerce

OOF Home

- · Mailing List
- Newsletters
- Credits and Disclaimer

OOF1

OOF2

- Download
- OOF2 Manual
- OOF2 Reference Manual
- Bugs
- Run OOF2 online

gtklogger

OOF2 Working Group

- Steve Langer
- Andrew Reid
- Günay Doğan
- R. Edwin García

NIST Links

- Applied and Computational Mathematics Division
- Information
 Technology Laboratory
- Center for Theoretical and Computational Materials Science

OOF: Finite Element Analysis of Microstructures

OOF2

[Introduction] [Features]

[System Requirements] [Disclaimer and Copyright] [Download] [Installation] [Platform Specific Installation Notes] [Getting Started] [Manual] [FAQ] [Reporting Bugs] [Known Problems]

Introduction

OOF2 version 2.1.7 is now available. The major differences between 2.1 and 2.0 are that 2.1 can solve time dependent problems, and has much improved nonlinear solvers. A detailed discussion of the differences and a summary of how to use the new features is included in the What's New in 2.1 page.

OOF2 version 2.1.5 can now be run on the nanoHUB. See the announcement for more details.

OOF2 retains (almost) all of the features of OOF1, although it does not read OOF1 data files. The latest versions of OOF1, however, can write OOF2 data files.

OOF2 is based on a new set of C++ classes for finite elements and material properties, tied together in a Python infrastructure. Python is an easy to use, high-level, object-oriented scripting language.

OOF2 is in an Active Development status.

Availability

Online webtool available at nanoHUB

https://nanohub.org/tools/oof2/

Requires a free nanoHUB account for access

(Please register for nanoHUB, Facebook/Google sign-ins can be buggy.)

II. OOF2 basics

Workflow

All tasks performed in seamlessly and in sequence using OOF2 integrated GUI

Windows based environment

https://www.gliffy.com

Units

OOF2 has no units!

Use most convenient units No conversions required

No error/consistency checking GIGO
One error multiplies...

Microstructures

- Fundamental ethos of OOF2 is to process and simulate FEM systems based on experimental microstructures
- Establish microstructure in OOF2 by image upload

silicon carbide micrograph

Different phases / materials identified by groups of pixels

Materials

Materials with defined properties created and assigned to

pixel groups

- Isotropic or anisotropic properties supported
- Materials properties: Young's modulus Poisson's ratio thermal conductivity coefficient of thermal expansion dielectric permittivity viscosity density color ...

Skeletons

- A **skeleton** is a partitioning of the micrograph into finite elements, it contains only geometric information
- A mesh is derived from the skeleton, containing geometry + equations, fields and boundary conditions

Modifying the boundary conditions, material properties, or equations to be solved requires rebuilding of the mesh but

not the skeleton

Element homogeneity

A good skeleton is highly **homogeneous** (homogeneity index ~0.99) - each element contains a single phase

 $(HI \sim 0.5)$

Skeleton refinement

- A good skeleton also contains very few high-aspect ratio elements, yielding better FEM numerical solutions
- A number of skeleton refinement tools exist to minimize the effective energy

$$E = \alpha E_{homog} + (1 - \alpha) E_{shape}$$

- annealing
- edge swapping
- smoothing
- refinement (element partitioning)

Meshing

- The mesh is constructed from the skeleton
- The mesh elements in OOF2 support linear and quadratic interpolation functions

These functions interpolate values from the mesh nodes to the element interiors

Equations

- OOF2 supports solution of the following equations:
 - heat equation
 - force balance
 - Coulomb equation
 - plane stress
 - in-plane polarization
 - plane heat flux

- Complex boundary conditions supported (Dirichlet, Neumann, periodic, generalized force)
- Complex fields possible (T, displacement, voltage)

Solvers

- A number of advanced numerical solvers are available
- User-specified tolerance and maximum iterations
- Problems are typically large and sparse

direct: slow

high accuracy

unsuitable for large problems (hi RAM rqmts)

iterative: fast

lower accuracy

only choice for large problems

Visualization

Micrograph, skeleton, and mesh visualized in Graphics pane

Also used to visualize solutions (stresses, temperature) computed over the terminal mesh

Analysis

The solution of scalar and vector fields over the terminal mesh can be outputted using the Analysis pane

```
XOOF2 Messages 1
File Windows
 Rave...

☑ Error ☑
# Operation: Direct Output
# Output: Temperature
# Domain: CrossSectionDomain(cross_section='cs<7>')
# Sampling: LineSampleSet(n_points=50,show_distance=False,show_fraction=False,sh
# Columns:
# 1. X
# 2. Y
# 3. Temperature
# time: 0.0
0.0067024182713837895, 0.0048068261787473608, 28.6805173366
0.0067172816794813387, 0.0047087276853035372, 28.7435242179
0.0067321450875788879, 0.0046106291918597136, 28.8065310991
0.006747008495676437, 0.0045125306984158901, 28.8695379804
0.0067618719037739854, 0.0044144322049720665, 28.9325448616
0.0067767353118715346, 0.0043163337115282429, 28.9955517428
0.0067915987199690837, 0.0042182352180844184, 29.0585586241
0 0068064621280666320 0 0041201367246405040
                                               29 1215655853
```

Data can be dumped to file for offline analysis

Activity viewer

- The Activity window indicates the current tasks occupying OOF2
- Very useful for monitoring long processes (solving, skeleton refinement, visualization)

Messages

The Messages window provides detailed task information, and communications to the user

