
MODULE 1:
INTRODUCTION

Linux & bash shell

I. Linux

2

What is Linux?
Linux is an operating system (OS) developed
by Linus Torvalds in 1991

Based on UNIX - developed in response to
closing legal loophole that made UNIX free

Many “distributions” - Fedora, RedHat,
CentOS, Debian, Ubuntu

Typically free and open source GNU licensing

Command line interface (CLI) and graphical
desktop environments (GDE)

3

Tux

Linus Torvalds

Richard Stallman

Why Linux?

4

Developed by Bell Labs in 1969, and initially free, UNIX
was quickly adopted as de facto scientific computing OS

Powerful CLI enables direct low level access
GDE provides simplicity and usability

Free and open source makes code development easy

Linux is everywhere
- 90% of supercomputers run Linux (incl. Blue Waters)
- Android OS is based on a Linux kernel
- Ubuntu distro is the most popular OS in the world

Can’t I use Windows / Mac OS X?

5

Maybe.

Some software have Mac OS X / Windows / Windows +
Cygwin versions to install on your local machine

Remote login via Mac OS X terminal / [Windows +
Cygwin / Putty] to SSH into EWS Linux

A key learning objectives of this course is to develop
familiarity and competence using Linux - Bon Courage!

What distro are we using?

6

EWS Linux machines run Redhat linux

II. bash shell

7

The command line

8

CLI and GDE offer alternatives to interact with a machine

Switching to a CLI can be very intimidating for new users!

CLI interaction is powerful, concise, and efficient

CLI scripting enables task automation

e.g. Download of 1500 daily NASDAQ stock prices

GDE: Point and click file download extremely tedious!
CLI: Trivially automated using CLI wget loop

bash shell

9

“Command line interpreters”
or “shells” convert text inputs
into OS commands

Many flavors: sh, bash, ksh, csh,
zsh, tcsh

The bash shell (“Bourne-again
shell”) is one of the most
popular, and the default on
many Linux distros

III. bash basics

10

bash: basics

11

Pop a bash terminal by clicking on
or navigating Applications System Tools Terminal

pwd - show path to present working directory

ls - list contents of current directory
ls -alh - list all contents of cdir in long form with

 human readable file sizes
ls /sw/q - list contents of directory /sw/q

cd <path> - change directory into <path>
cd .. - change directory up one level
cd ../.. - change directory up two levels

bash: basics

12

touch <file> - make new file <file> or update last
 access of existing file

mkdir <dir> - make directory

chmod 755 <file> - change file permissions to
 r+w+x (user), r+x (group, world)

chmod 644 <file> - change file permissions to
 r+w (user), r (group, world)

[N.B. r=4, w=2, x=1]

var=ferrari42 - assign ferrari42 to var
echo $var - print $var

bash: basics

13

./<execFile> - execute execFile in cdir
<path>/<execFile> - execute execFile in path

which <cmd> - location of command
cmd

clear - clear terminal

wget -O <file> <url> - download url data into
file

e.g. wget -O myProf.png http://bit.ly/
2jt9NAl

http://bit.ly/2jt9NAl
http://bit.ly/2jt9NAl

bash: basics

14

cp <source> <target> - copy file source to
target
e.g. cp myFile /apps/doc/

cp -r <source> <target> - copy recursively
(copy source directory and everything in it)

e.g. cp -r myDir ./dir1/dir2/

mv <source> <target> - move source to target
(same for files and directories)

rm <file> - remove file

bash: safety!

15

cp / rm / mv - These do exactly what you ask
They do not ask for permission
Furthermore, there is no Trash/Recycling
Once you remove / overwrite a file, it’s gone.
Standard “safety” choices: use alias in your .bashrc
alias cp=‘cp -i’
alias rm=‘rm -i’
alias mv=‘mv -i’
setopt noclobber
You don’t have to do this, but you may breathe a little
easier with some safety.

bash: basics

16

whoami - show your login username
who - show everyone currently logged in

cat <file> - show file contents

less <file> - show file contents (spacebar ,
b)

head <file> - show head of file
tail <file> - show tail of file
tail -n <nLines> <file> - show tail nLines
of file

bash: basics

17

zip <archive> <file1 file2 ...>
 - create zip file archive.zip containing file1, file2, ...
unzip <archive>
 - unzip zip file archive.zip

tar cvzf <archive.tgz> <file1
file2 ...>
 - create gzip compressed tape archive archive.tgz

 containing file1, file2, ...
tar xvzf <archive.tgz>
 - uncompress end extracted compressed tape

bash: basics

18

top - show active processes
top -o cpu - show active processes ordered by cpu
%
top -U <usr> - show active processes owned by
usr

grep <str> <file> - return lines in file containing
 string str

find <path> -name <*str*> -print
 - print all files in path containing str in their name

bash: special symbols

19

~ - your home directory

. - current directory

.. - directory one level up

* - wildcard character

\ - escape succeeding character
e.g. mkdir My\ Directory

| - pipe

bash: special symbols

20

> - redirect standard output and overwrite
>> - redirect standard output and append
e.g. echo “Today was great!” >>
myDiary.txt

$var - dereference variable var

“ ” - enclose text string but expand $
‘ ’ - enclose text string but do not expand $
e.g. myVar=“My String With Spaces”
 echo “This is $myVar”

IV. bash utilities

21

bash: integer arithmetic

22

expr - integer arithmetic engine

e.g.

$ echo `expr 1 + 1`
 2

 $ var1=`expr 10 * 2`
 $ var2=`expr 21 / 7`
 $ echo $var1 $var2 `expr $var1 /
$var2`
 20 3 6

bash: quick calculator

23

bc -l - arbitrary precision calculator (w/ math lib)
$ bc -l
2/3
.66666666666666666666
2^3
8
e(1)
2.71828182845904523536
pi=a(1)*4
pi
3.14159265358979323844
s(pi/6)
.49999999999999999999

bash: ssh & scp

24

SSH CLI remote login is supported by ssh (secure shell)
ssh <user>@<hostname> - login to host
ssh -Y <user>@<hostname> - login to host w/
secure X forwarding (use this to get graphics via SSH!)

N.B. For EWS, hostname=linux.ews.illinois.edu

SCP CLI file transfers supported by scp (secure copy)
scp <src> <user>@<hostname>:<target>
 - upload
scp <user>@<hostname>:<src> <target>
 - download

bash: ssh & scp

25

ssh and scp are prepackaged with Linux / Mac OS X and
are accessible directly from the bash terminal

On Windows, you need to download a third party ssh
client in order to make a ssh connection with EWS

www.putty.org https://answers.uillinois.edu/
illinois.engineering/page.php?id=81727

http://www.putty.org
https://answers.uillinois.edu/illinois.engineering/page.php?id=81727

bash: sftp

26

SFTP more sophisticated alternative to scp
(secure file transfer protocol)

sftp <user>@<hostname> - login to host

ls - remote ls
lls - local ls
pwd - remote pwd
lpwd - local pwd
cd - remote cd
lcd - local cd
get <file> - download file
put <file> - upload file

bash: vi/vim

27

Two built-in CLI text editors: vi/vim & emacs
Seem slow and painful, but invaluable for on-the-fly edits

Use whichever you prefer, I use both.
(It is very fashionable to argue over which is better...)
vi/vim is fast for text manipulation, uses two modes
emacs is has lots of built-in modules, more “Word”-like

Two-modes: navigation for moving
insertion for editing

Nav mode is the default mode, and can be accessed by
hitting Esc

Ins mode is accessed by hitting i

bash: vi/vim

28

Nav mode
 - single char / single line movement
gg - go to top of file
^ - go to beginning of line
$ - go to end of line
<n>G - go to line n
w - skip forward one word
b - skip backward one word

yy or y$ - copy current line
y<n> - copy next n lines

bash: vi/vim

29

Nav mode
x - delete character
o - create new line below and enter insert mode

i - enter insert mode to left of current character
I - enter insert mode at beginning of line
a - enter insert mode to right of current character
A - enter insert mode at end of line

bash: vi/vim

30

Nav mode
dd or d$ - delete current line
d<n>w - delete next n words
d<n> - delete next n lines

u - undo
Ctrl+r - redo

bash: vi/vim

31

Nav mode
/<str><Enter> - search forward for str
?<str><Enter> - search backward for str

n - go to next match
<N>n - go to Nth match

bash: vi/vim

32

Nav mode
:w - writes file
:w! - writes file even if read only

:q - quit
:q! - quit and don't question me

(good way to mess things up)

:wq - write quit
:wq! - write quit and don't question me

(very good way to mess things up)

bash: vi/vim

33

Ins mode

Type normally - what you enter appears on screen

 work as in nav mode

Hit Esc to get back to nav mode

bash: .bash_profile & .bashrc

34

Hidden files start with .

~/.bashrc is executed for every new terminal

~/.bash_profile is executed when you login
(~/.bash_profile calls ~/.bashrc)

 These files are useful to store aliases and modify PATH

N.B. On some systems ~/.bash_profile is

bash: .bash_profile & .bashrc

35

(i) Use vi to add lls as alias for ls -al to .bashrc

$ vi ~/.bashrc edit .bashrc
$ G go to end of file
$ o edit line below
$ alias lls="ls -al" add alias
$ Esc escape to navigate mode
$:wq write and quit

bash: .bash_profile & .bashrc

36

bash: .bash_profile & .bashrc

37

(ii) Use vi to add ~/local/bin to your PATH in .bashrc

$ vi ~/.bashrc edit .bashrc
$ G go to end of file
$ o edit line below
$ export PATH=$PATH:~/local/bin add
to PATH
$ Esc escape to navigate mode
$:wq write and quit

bash: .bash_profile & .bashrc

38

bash: installing software

39

Typical anatomy of an installation from source:

$ wget <app_url> download
$ tar xvzf <app.tgz> uncompress
$ cd ./app
$./configure --prefix=<location>
 configure and specify location
$ make compile
$ make install install

V. bash scripting

40

What is bash scripting?

41

A bash script is nothing more than a list of bash
commands in an executable text file

Exactly the same behavior could be achieved by copying
and pasting the script into the bash shell

Extremely powerful way to automate system tasks

e.g. file downloads

system backups
job submission
file processing

Anatomy of a script

42

A script is nothing more than a text file
- write using vi, emacs, Notepad, or favorite text editor

comments (start with #)

list of bash commands

the “sha-bang” line

Script 1: hello world!

43

$ touch helloWorld new script file
$ chmod 755 helloWorld making executable

$ vi helloWorld edit line below
$ i enter insert mode
$ #!/bin/bash <Enter>
$ # this is my hello world script
<Enter>
$ echo “Hello World!”
$ Esc escape to navigate mode
$:wq write and quit

Script 2: backup

44

Placing all files in current directory into a
compressed tape archive bkp.tgz

Renaming bkp.tgz bkp_<arg>.tgz where
arg is the first argument in the call to the
executable

Passing variables $1, $2, $3, ...

Script 3: summer

45

Initializing sum to 0

while loop - run loop while the variable
$# is greater than 0

- $# = number of parameters in exec call

- shift = kick out $1 and shift rest down
 (i.e. $1 $2, $2 $3, $3 $4, ...)

- arithmetic comparisons:
-lt <
-gt >
-le <=
-ge >=
-eq ==
-ne !=

while loop arithmetic comparisons

Script 4: oracle

46

if loop

nested if loop

- can also use the construct:
if [] ; then
elif [] ; then
elif [] ; then
else
fi

if/else statement
nesting

Script 5: calculator

47

safeguard on usage

- exit terminates script

case conditional

- starts case, ends esac

-) terminates pattern match

- ;; terminates each case

- | is the “or” character

- * is the wildcard “catch all”

case conditional
exit

Script 5: calculator

48

Script 6: stringer

49

Create an array strArray from parameters
- $@ = all parameters passed to bash call
- ${ARRAY[@]} = array contents

Create empty array fileArray

For all strings except “virus” append txt
and store in fileArray
- ${#ARRAY[@]} = array size
- “” terminates $ dereference string
- str comparisons:

= equal
!= not equal
> greater than
< less than
-n <str> not empty

arrays
$@

Script 7: filer

50

Infinite loop (Ctrl + C to
break)
Read user input into str
Test if str is a regular file in the
present working directory

- file comparison operators

 -e file exists (may be directory)
 -f file exists (not directory)
 -d directory exists
 -r file readable
 -w file writable
 -x file executable

infinite loop
Ctrl + C

read user input

Script 8: squarer

51

Declaring a function at top of script

As for main function $1,$2,... are passed variables

Setting up the iterative loop

Performing square using our function
sleep 0.5 = 0.5 s pause between prints
incrementing loop variable

iterating
functions

sleep

VI. awk

52

awk

53

awk is a programming language in its own right

Developed at Bell Labs in 70’s by Aho, Weinberger, &
Kernighan

Powerful, simple, fast and flexible language

Standard part of most Linux distributions, used primarily
for rapid and efficient line-by-line text processing

Why awk?

54

“Forget awk, I’ll just use vi / emacs / Notepad!”
OK, good luck...
- extract the third column of this 50,000 line file
- divide the second field of each line by the seventh, and

save results in csv format
- extract every 15th line of this file and invert the field

ordering to run from last to first

awk can do these things (and many others!) extremely
efficiently and quickly using “one liner” commands

integrates seamlessly into bash shell cat <file> |
awk ...
integrates seamlessly into bash scripts
great power using only a handful of commands

awk basics

55

Rudimentary awk, comprehensive beginner’s tutorial at:
http://www.grymoire.com/Unix/Awk.html

Anatomy of an awk program

awk 'BEGIN { ... }
 { ... }
 END { ... }'
 inFile > outFile

Can place within a script, or enter directly into terminal

White space doesn’t matter

Do stuff before starting [optional]

Line-by-line processing
Do stuff after end-of-file [optional]
Read from inFile, write to outFile

http://www.grymoire.com/Unix/Awk.html

awk basics

56

Alternatively, can pipe input from terminal
cat inFile | awk 'BEGIN { ... }

{ ... }
END { ... }'
> outFile

Omit “> outFile” to output directly to terminal

Use “>>” instead of “>” to append rather than overwrite
cat inFile > awk 'BEGIN { ... }

{ ... }
END { ... }'
>> outFile

What goes in the { }?

57

Commands perform line-by-line text processing

Assignment of internal awk variables

Flow control and loops

Pulling in of bash variables from surrounding script

Printing to terminal or file

Basic arithmetic

Extract the x,y,z coordinates of peptide atoms from pdb
formatted files peptide[1-3].pdb into coords[1-3].txt

Concatenate coords[1-3].txt into coords_concat.txt

Use bash to iterate over files
Use awk to perform text processing

[bash + awk] script example

58

[bash + awk] script example

59

setting up in and out files

setting up iteration

initializing concat file

awking each file in turn
- printf is formatted print
- formatting like Matlab
- $n are field codes
- NR is a special variable
 for number of records
 = number of lines

cat each file into concat file

rm each coordsX.txt file?

increment iterator

[bash + awk] script example

60

Doing this [by hand / in Excel / in Matlab] at any significant
scale would be extremely tedious and error prone!

