?o:p> |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ECE 598: Waves Physics in Wireless CommunicationFall 2020 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Instructor:Professor Zhen Peng Office: 5058 ECE Building Email: zvpeng@illinois.edu Teaching assistant:Lecture Schedule:Tuesdays and Thursdays 09:00 - 10:20 Class video in Echo 360 Office hourWednesdays 1:00-3:00 pm Textbook:References:
Course Overview:In this graduate course, we will discuss the wave physics of information transmission in diverse and complex environments. Students will learn physics-based modelling of the wireless system through electromagnetic theory, which, in turn, will appreciate the formulation and development of commensurate communication theory. 1. Fundamental Elements of Electromagnetics (Weeks 1-2) • Maxwell’s Equations • Plane Wave Representation • Green’s Function • Antenna Radiation • Reaction Theorem and Reciprocity Theorem 2. Information-theoretic Representation of EM Wave (Weeks 2-4) • Wave Physics of Information • Information Content of the Waveform • Green’s Function Propagation Operator • Multiple Transmitters and Receivers • Hilbert-Schmidt Integral Operator 3. Stochastic Representation of Wave Propagation (Weeks 4-6) • Green’s Function for a Random Environment • Spatially Varying Green’s Function: Coherence Distance • Frequency-Varying Green’s Function: Coherence Bandwidth • Time-Varying Green’s Function: Coherence Time • Karhunen-Loeve Representation 4. Communication Technologies used in Wireless Systems (Weeks 6-7) • Propagation Effects: Multiplexing and Diversity • Orthogonal Time Division (TDMA/GSM) • Orthogonal Spectrum Division (OFDM) • Orthogonal Code Division (CDMA) • Orthogonal Spatial Division (MIMO) 5. Multiple Scattering in Random Media (Weeks 8-10) • Multiple Scattering and Born Approximation • Random Walk Theory • Propagation of Coherence • Hilbert-Schmidt Decomposition • Degrees of Freedom and Stochastic Diversity • Pulse Propagation in Random Media 6. Wave-Chaotic Indoor Environment (Weeks 10-12) • Introduction to Deterministic Chaos • Cavity Modal Theory • Random Wave Model • Random Matrix Theory • Stochastic Green’s Function in Chaotic Media • Spectral-Spatial Correlations in Information Transmission 7. Large-Scale System Analysis (Weeks 13-14) • Massive MIMO and Holographic Surface • Fourier Spectral Representation • Channel Degrees of Freedoms • Connection to Statistical Physics Pre-requisite:ECE350 (or ECE520), ECE 361, ECE 454 (or ECE 577), or consent of the instructor
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aug 2020: ECE598 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||