
Software Defined
Networking

ECE/CS598HPN

Radhika Mittal

Acknowledgements: Scott Shenker, UC Berkeley

Software-defined Networking

• My favorite example for the impact of
academic research.

• Transformed the way we manage networks.
• Particularly within and across datacenters.

What is Network Management?

• Two “planes” of networking

• Data plane: forwarding packets
• Based on local forwarding state

• Control plane: computing that forwarding state
• Involves coordination with rest of system

• Broad definition of “network management”:
• Everything having to do with the control plane

Original goals for the control plane

• Basic connectivity: route packets to destination
• Local state computed by routing protocols
• Globally distributed algorithms

• Interdomain policy: find policy-compliant paths
• Done by globally distributed BGP

• For long time, these were the only relevant goals!
• What other goals are there in running a network?

Isolation

• L2 broadcast protocols often used for discovery
• Useful, unscalable, invasive

• Want multiple logical LANs on a physical network
• Retain usefulness, cope with scaling, provide isolation

• Use VLANs (virtual LANs) tags in L2 headers
• Controls where broadcast packets go
• Gives support for logical L2 networks
• Routers connect these logical L2 networks

• No universal method for setting VLAN state

Access Control

• Operators want to limit access to various hosts
• “Don’t let laptops access backend database machines”

• This can be imposed by routers using ACLs
• ACL: Access Control List

• Example entry in ACL: <header template; drop>
• If not port 80, drop
• If source address = X, drop

Traffic Engineering

• Want to avoid persistent overloads on links

• Choose routes to spread traffic load across links

• Two main methods:
• Setting up MPLS tunnels (MPLS is layer 2.5)
• Adjusting weights in OSPF

• Often done with centralized computation
• Take snapshot of topology and load
• Compute appropriate MPLS/OSPF state
• Send to network

Net management has many goals

• Achieving these goals is job of the control plane…

• …which currently involves many mechanisms

• Globally distributed: routing algorithms

• Manual/scripted configuration: ACLs, VLANs

• Centralized computation: Traffic engineering

• Many different control plane mechanisms

• Each designed from scratch for their intended goal

• Encompassing a wide variety of implementations
• Distributed, manual, centralized,…

• And none of them particularly well designed

Managing networks is extremely complicated!

Adding to the complications

• When running distributed algorithms and protocols.
• Need to deal with standardization and interoperability.

• When configuring individual network devices.
• Interface varies across vendors and protocols.

• Indirect control.
• Policy specification had to workaround existing routing

mechanisms.

How have we managed to survive?

• Net. admins miraculously master this complexity
• Understand all aspects of networks
• Must keep myriad details in mind

• No longer possible…..

Large datacenters

• 100,000s machines; 10,000s switches

• This is pushing the limits of what we can handle….

Multiple tenancy

• Large datacenters can host many customers

• Each customer gets their own logical network
• Customer should be able to set policies on this network
• ACLs, VLANs, etc.

• If there are 1000 customers, that adds 3 oom
• Where oom = orders of magnitude

• This goes way beyond what we can handle

Net Operators Were Now Weeping…

• They have been beaten by complexity

• The era of ad hoc control mechanisms is over

• We need a simpler, more systematic design

• So how do you “extract simplicity”?

Abstractions and Layering!

Network Abstractions

• Consider the data and control planes separately

• Different tasks, so naturally different abstractions

Abstractions for Data Plane: Layers
Applications

…built on…

…built on…

…built on…

…built on…

Reliable (or unreliable) transport

Best-effort global packet delivery

Best-effort local packet delivery

Physical transfer of bits
16

The Importance of Layering

• Decomposed delivery into basic components

• Independent, compatible innovation at each layer
• Clean “separation of concerns”
• Leaving each layer to solve a tractable problem

• Responsible for the success of the Internet!
• Rich ecosystem of independent innovation

Control Plane Abstractions

?

Control Plane Task

Compute forwarding state.

• Requirements:
• Consistent with low-level hardware/software

• Which might depend on particular vendor
• Based on entire network topology

• Because many control decisions depend on topology
• For all routers/switches in network

• Every router/switch needs forwarding state

• Design one-off mechanisms that solve all three

• A sign of how much we love complexity

• No other field would deal with such a problem!

• They would define abstractions for each subtask

• …and so should we!

Our Pre-SDN approach

Separate Concerns with Abstractions

1. Be compatible with low-level hardware/software
Need an abstraction for general forwarding model

2. Make decisions based on entire network
Need an abstraction for network state

3. Compute configuration of each physical device
Need an abstraction that simplifies configuration

Abs#1: Forwarding Abstraction

• Express intent independent of implementation
• Don’t want to deal with proprietary HW and SW

• OpenFlow is current proposal for forwarding
• Standardized interface to switch
• We will discuss in next class.

Separate Concerns with Abstractions

1. Be compatible with low-level hardware/software
Need an abstraction for general forwarding model

2. Make decisions based on entire
network

Need an abstraction for network state

3. Compute configuration of each physical device
Need an abstraction that simplifies configuration

Abs#2: Network State Abstraction

• Abstract away various distributed mechanisms

• Abstraction: global network view
• Annotated network graph provided through an API

• Implementation: “Network Operating System”
• Runs on servers in network (“controllers”)
• Logically centralized.

• Information flows both ways
• Information from routers/switches to form “view”
• Configurations to routers/switches to control forwarding

Control	Program

Software	Defined	Network	(SDN)

Network	OS

Global Network View

Traditional	Control	MechanismsNetwork	of	Switches	and/or	Routers

Distributed	algorithm	running	between	neighbors
Complicated	task-specific	distributed	algorithm

routing,	access	control,	etc.

Packet
Forwarding Packet

Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
ForwardingCustom	

Hardware

OS
Feature Feature

Custom	
Hardware

OS
Feature Feature

Custom	
Hardware

OS
Feature Feature

Custom	
Hardware

OS
Feature Feature

Custom	
Hardware

OS
Feature Feature

Implication of global network view

• We can now use centralized algorithms!

• Example: link-state routing
• Dijkstra’s algorithm: 4 pages
• OSPF: RFC 2328, 245 pages

Thanks to Nick McKeown

Key idea behind SDN

• Separate control plane from data plane.

• Data plane: hardware that handles packet forwarding on
individual switches.

• Control plane: centralized software that remotely and
directly controls switch hardware.

Separate Concerns with Abstractions

1. Be compatible with low-level hardware/software
Need an abstraction for general forwarding model

2. Make decisions based on entire network
Need an abstraction for network state

3. Compute configuration of each physical
device

Need an abstraction that simplifies configuration

Abs#3: Specification Abstraction

• Control mechanism expresses desired behavior
• Whether it be isolation, access control, or QoS

• It should not be responsible for implementing that
behavior on physical network infrastructure

• Requires configuring the forwarding tables in each switch

• Proposed abstraction: abstract view of network
• Abstract view models only enough detail to specify goals
• Will depend on task semantics

Simple Example: Access Control

Global
Network	
View

Abstract	
Network
View

A

B

A

B

Network	OS

Global Network View

Abstract Network View

Control	ProgramVirtualization	Layer

Software Defined Network

Clean Separation of Concerns

• Control program: express goals on abstract view
• Driven by Operator Requirements

• Virt. Layer: abstract view çè global view
• Driven by Specification Abstraction for particular task

• NOS: global view çè physical switches
• API: driven by Network State Abstraction
• Switch interface: driven by Forwarding Abstraction

Network	OS

Global Network View

Abstract Network View

Control	Program

Virtualization	Layer

SDN: Layers for the Control Plane

Key idea behind SDN

• Separate control plane from data plane.

• Data plane: hardware that handles packet forwarding on
individual switches.

• Control plane: centralized software that remotely and
directly controls switch hardware.

• Use software design principles to modularize the control plane.

When and how did it start?

2D HotNets (2004)

• Switches have bulky control plane
running distributed algorithms.

• Separate management plane.

• Difficult to configure and manage
network state.

• Based on 2D’s:
• Decision plane
• Dissemination plane

• Wafer-thin control plane on switch.

Network-Wide Decision Making:
Toward A Wafer-Thin Control Plane

Jennifer Rexford, Albert Greenberg, Gisli Hjalmtysson David A. Maltz, Andy Myers, Geoffrey Xie, Jibin Zhan, Hui Zhang
jrex,albert,gisli @research.att.com dmaltz,acm, geoffxie,jibin,hzhang @cs.cmu.edu

AT&T Labs–Research Carnegie Mellon University

Abstract
We argue for the refactoring of the IP control plane to pro-
vide direct expressibility and support for network-wide goals
relating to all fundamental functionality: reachability, perfor-
mance, reliability and security. This refactoring is motivated
by trends in operational practice and in networking technol-
ogy. We put forward a design that decomposes functionality
into information dissemination and decision planes. The de-
cision plane is formed by lifting out of the routers all decision
making logic currently found there and merging it with the
current management plane where network-level objectives are
specified. What is left on each router is a wafer-thin control
plane focused on information dissemination and response to
explicit instructions for configuring packet forwarding mech-
anisms. We discuss the consequences, advantages and chal-
lenges associated with this design.

1. Introduction
Despite the early design goal of minimizing the state in net-

work elements, tremendous amounts of state are distributed
across routers and management platforms in today’s IP net-
works. We believe that the many, loosely-coordinated ac-
tors that create and manipulate the distributed state introduce
substantial complexity that makes both backbone and enter-
prise networks increasingly fragile and difficult to manage. In
this paper, we argue that the current division of functionality
across the data, control, and management planes is antithetical
to the desire for network-wide control. Instead, we advocate
moving the decision logic for running the network from the
individual routers into the management system. In our frame-
work, the routers simply disseminate timely information about
the network and respond to explicit instructions for configur-
ing the packet forwarding behavior.
We argue that our approach will significantly reduce the

complexity of IP routers while making the resulting network
easier to manage. We first describe the status quo, and then
present and contrast our design. Then, we give concrete ex-
amples of how operators are forced to run their networks today
and how they could be better served by our design, and we end
by considering the challenges facing our design.

1.1 Today’s Data, Control, and Management Planes
State distributed across interconnected routers defines how

a network “works.” Yet, our understanding of how this state

Research sponsored by the NSF under ANI-0085920 and ANI-
0331653. Views and conclusions contained in this document are
those of the authors.

is created and maintained (and, perhaps more importantly,
how it should be created and maintained) is surprisingly lim-
ited. Just as great care went in to splitting the Internet’s func-
tionality between the smart edge devices (such as end host
computers) and the “dumb” core devices (such as routers),
we need to revisit the separation of functionality between the
three “planes” that affect the operation of an IP network:

Data plane: The data plane is local to an individual
router, or even a single interface card on the router, and
operates at the speed of packet arrivals. For example,
the data plane performs packet forwarding, including the
longest-prefix match that identifies the outgoing link for
each packet, as well as the access control lists (ACLs)
that filter packets based on their header fields. The data
plane also implements functions such as tunneling, queue
management, and packet scheduling.
Control plane: The control plane consists of the network-
wide distributed algorithms that compute parts of the
state in the data plane. For example, the control plane
includes BGP update messages and the BGP decision
process, as well as the Interior Gateway Protocol (such
as OSPF), its link-state advertisements (LSAs), and the
Dijkstra’s shortest-path algorithm. A primary job of the
control plane is to compute routes between IP subnets,
including combining information from each routing pro-
tocol’s Routing Information Base (RIB) to construct a
single Forwarding Information Base (FIB) that drives
packet forwarding decisions.
Management plane: The management plane stores and
analyzes measurement data from the network and gen-
erates the configuration state on the individual routers.
For example, the management plane collects and com-
bines SNMP (Simple Network Management Protocol)
statistics, traffic flow records, OSPF LSAs, and BGP
update streams. A tool that configures the OSPF link
weights and BGP policies to satisfy traffic engineering
goals would be part of the management plane. Similarly,
a system that analyzes traffic measurements to detect
denial-of-service attacks and configures ACLs to block
offending traffic would be part of the management plane.

In today’s IP networks, the data plane operates at the timescale
of packets and the spatial scale of individual routers, the con-
trol plane operates at the of timescale of seconds with an in-
complete view of the entire network, and the management
plane operates at the timescale of minutes or hours and the
spatial scale of the entire network.
In this paper, we argue that this three-level division of func-

tionality leads to complex decision logic split across multiple

Design and Implementation of a Routing Control Platform

Matthew Caesar
UC Berkeley

Donald Caldwell
AT&T Labs-Research

Nick Feamster
MIT

Jennifer Rexford
Princeton University

Aman Shaikh
AT&T Labs-Research

Jacobus van der Merwe
AT&T Labs-Research

Abstract
The routers in an Autonomous System (AS) must dis-
tribute the information they learn about how to reach ex-
ternal destinations. Unfortunately, today’s internal Bor-
der Gateway Protocol (iBGP) architectures have serious
problems: a “full mesh” iBGP configuration does not
scale to large networks and “route reflection” can in-
troduce problems such as protocol oscillations and per-
sistent loops. Instead, we argue that a Routing Con-
trol Platform (RCP) should collect information about ex-
ternal destinations and internal topology and select the
BGP routes for each router in an AS. RCP is a logically-
centralized platform, separate from the IP forwarding
plane, that performs route selection on behalf of routers
and communicates selected routes to the routers using
the unmodified iBGP protocol. RCP provides scalability
without sacrificing correctness. In this paper, we present
the design and implementation of an RCP prototype on
commodity hardware. Using traces of BGP and inter-
nal routing data from a Tier-1 backbone, we demonstrate
that RCP is fast and reliable enough to drive the BGP
routing decisions for a large network. We show that RCP
assigns routes correctly, even when the functionality is
replicated and distributed, and that networks using RCP
can expect comparable convergence delays to those us-
ing today’s iBGP architectures.

1 Introduction

The Border Gateway Protocol (BGP), the Internet’s in-
terdomain routing protocol, is prone to protocol oscil-
lation and forwarding loops, highly sensitive to topol-
ogy changes inside an Autonomous System (AS), and
difficult for operators to understand and manage. We
address these problems by introducing a Routing Con-
trol Platform (RCP) that computes the BGP routes for
each router in an AS based on complete routing informa-
tion and higher-level network engineering goals [1, 2].

This paper describes the design and implementation of
an RCP prototype that is fast and reliable enough to co-
ordinate routing for a large backbone network.

1.1 Route Distribution Inside an AS
The routers in a single AS exchange routes to external
destinations using a protocol called internal BGP (iBGP).
Small networks are typically configured as a “full mesh”
iBGP topology, with an iBGP session between each pair
of routers. However, a full-mesh configuration does not
scale because each router must: (i) have an iBGP ses-
sion with every other router, (ii) send BGP update mes-
sages to every other router, (iii) store a local copy of
the advertisements sent by each neighbor for each des-
tination prefix, and (iv) have a new iBGP session con-
figured whenever a new router is added to the network.
Although having a faster processor and more memory
on every router would support larger full-mesh config-
urations, the installed base of routers lags behind the
technology curve, and upgrading routers is costly. In
addition, BGP-speaking routers do not always degrade
gracefully when their resource limitations are reached;
for example, routers crashing or experiencing persistent
routing instability under such conditions have been re-
ported [3]. In this paper, we present the design, imple-
mentation, and evaluation of a solution that behaves like
a full-mesh iBGP configuration with much less overhead
and no changes to the installed base of routers.

To avoid the scaling problems of a full mesh, today’s
large networks typically configure iBGP as a hierarchy of
route reflectors [4]. A route reflector selects a single BGP
route for each destination prefix and advertises the route
to its clients. Adding a new router to the system simply
requires configuring iBGP sessions to the router’s route
reflector(s). Using route reflectors reduces the memory
and connection overhead on the routers, at the expense
of compromising the behavior of the underlying network.
In particular, a route reflector does not necessarily select

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 15

Routing Control Platform (2005)

• iBGP: protocol to exchange routes
to external destination within AS.

• Scalability concerns.

• Prone to forwarding loops and
oscillations.

• RCP: centralized platform for iBGP
routing.

4D (2005)

• Difficult to configure
management policies (e.g.
access control).

• 4D architecture.

A Clean Slate 4D Approach to Network Control and
Management ∗

Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers,
Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, Hui Zhang

{dmaltz,acm,yh,jibin,hzhang}@cs.cmu.edu
gisli@ru.is jrex@cs.princeton.edu albert@research.att.com xie@nps.edu

ABSTRACT
Today’s data networks are surprisingly fragile and difficult to man-
age. We argue that the root of these problems lies in the complexity
of the control and management planes—the software and protocols
coordinating network elements—and particularly the way the de-
cision logic and the distributed-systems issues are inexorably in-
tertwined. We advocate a complete refactoring of the function-
ality and propose three key principles—network-level objectives,
network-wide views, and direct control—that we believe should
underlie a new architecture. Following these principles, we identify
an extreme design point that we call “4D,” after the architecture’s
four planes: decision, dissemination, discovery, and data. The 4D
architecture completely separates an AS’s decision logic from pro-
tocols that govern the interaction among network elements. The
AS-level objectives are specified in the decision plane, and en-
forced through direct configuration of the state that drives how the
data plane forwards packets. In the 4D architecture, the routers and
switches simply forward packets at the behest of the decision plane,
and collect measurement data to aid the decision plane in control-
ling the network. Although 4D would involve substantial changes
to today’s control and management planes, the format of data pack-
ets does not need to change; this eases the deployment path for the
4D architecture, while still enabling substantial innovation in net-
work control and management. We hope that exploring an extreme
design point will help focus the attention of the research and in-
dustrial communities on this crucially important and intellectually
challenging area.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Packet Switching Net-
works; C.2.2 [Network Protocols]: Routing Protocols; C.2.3 [Network
Operations]: Network Management

∗This research was sponsored by the NSF under ITR Awards ANI-
0085920 and ANI-0331653. Views and conclusions contained in
this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of
AT&T, NSF, or the U.S. government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

General Terms
Measurement, Control, Performance, Reliability

Keywords
Network management, robustness, control

1. INTRODUCTION
Although IP networking has been wildly successful, there are

serious problems lurking “under the hood.” IP networks exhibit a
defining characteristic of unstable complex systems—a small local
event (e.g., misconfiguration of a routing protocol on a single in-
terface) can have severe, global impact in the form of a cascading
meltdown. In addition, individual Autonomous Systems (ASes)
must devote significant resources to “working around” the con-
straints imposed by today’s protocols and mechanisms to achieve
their goals for traffic engineering, survivability, security, and pol-
icy enforcement. We believe the root cause of these problems lies
in the control plane running on the network elements and the man-
agement plane that monitors and configures them. In this paper, we
argue for revisiting the division of functionality and advocate an ex-
treme design point that completely separates a network’s decision
logic from the the protocols that govern interaction of network el-
ementsWe initially focus our attention on the operation of a single
Autonomous System (AS), though we also discuss how multiple
ASes can coordinate their actions.
The Internet architecture bundles control logic and packet han-

dling into the individual routers and switches distributed through-
out an AS. As a result, each router/switch1 participates in distributed
protocols that implicitly embed the decision logic. For example, in
IP networks, the path-computation logic is governed by distributed
protocols such as OSPF, IS-IS, and EIGRP. The routing protocols
dictate not only how the routers learn about the topology, but also
how they select paths. Similarly, in Ethernet networks, the path-
computation logic is embedded in the Spanning Tree protocol [1].
However, today’s data networks, operated by numerous institutions
and deployed in diverse environments, must support network-level
objectives and capabilities far more sophisticated than best-effort
packet delivery. These ever-evolving requirements have led to in-
cremental changes in the control-plane protocols, as well as com-
plex management-plane software that tries to “coax” the control
plane into satisfying the network objectives. The resulting com-
plexity is responsible for the increasing fragility of IP networks and
the tremendous difficulties facing people trying to understand and
manage their networks.

1We use the terms “network element” and “router/switch” inter-
changeably throughout the paper.

Decision

Dissemination
Discovery

Data

Network-level
objectives

Direct
control

Network-
wide views

4D (2005)

Software Defined Network (SDN)

Control	Program

Packet
Forwarding Packet

Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Decision

Data

Discovery

DisseminationNetwork	OS

Global Network View

Abstract Network View

Virtualization	Layer																										

SANE (2006)

SANE: A Protection Architecture for Enterprise Networks

Martin Casado, Tal Garfinkel, Aditya Akella, Michael J. Freedman
Dan Boneh, Nick McKeown, Scott Shenker
{casado,talg,mfreed,dabo,nickm}@cs.stanford.edu
aditya@cs.cmu.edu, shenker@icsi.berkeley.edu

Abstract
Connectivity in today’s enterprise networks is regulated
by a combination of complex routing and bridging poli-
cies, along with various interdiction mechanisms such as
ACLs, packet filters, and other middleboxes that attempt
to retrofit access control onto an otherwise permissive
network architecture. This leads to enterprise networks
that are inflexible, fragile, and difficult to manage.
To address these limitations, we offer SANE, a pro-

tection architecture for enterprise networks. SANE de-
fines a single protection layer that governs all connec-
tivity within the enterprise. All routing and access con-
trol decisions are made by a logically-centralized server
that grants access to services by handing out capabilities
(encrypted source routes) according to declarative access
control policies (e.g., “Alice can access http server foo”).
Capabilities are enforced at each switch, which are sim-
ple and only minimally trusted. SANE offers strong at-
tack resistance and containment in the face of compro-
mise, yet is practical for everyday use. Our prototype im-
plementation shows that SANE could be deployed in cur-
rent networks with only a few modifications, and it can
easily scale to networks of tens of thousands of nodes.

1 Introduction

The Internet architecture was born in a far more innocent
era, when there was little need to consider how to defend
against malicious attacks. Moreover, many of the Inter-
net’s primary design goals, such as universal connectiv-
ity and decentralized control, which were so critical to its
success, are at odds with making it secure.
Worms, malware, and sophisticated attackers mean

that security can no longer be ignored. This is particu-
larly true for enterprise networks, where it is unaccept-
able to lose data, expose private information, or lose sys-
tem availability. And so security measures have been
retrofitted to enterprise networks via many mechanisms,

including router ACLs, firewalls, NATs, and other mid-
dleboxes, along with complex link-layer technologies
such as VLANs.
Despite years of experience and experimentation,

these mechanisms are far from ideal. They require a
significant amount of configuration and oversight [43],
are often limited in the range of policies they can en-
force [45], and produce networks that are complex [49]
and brittle [50]. Moreover, even with these techniques,
security within the enterprise remains notoriously poor.
Worms routinely cause significant losses in productiv-
ity [9] and potential for data loss [29, 34]. Attacks re-
sulting in theft of intellectual property and other sensitive
information are similarly common [19].
The long and largely unsuccessful struggle to protect

enterprise networks convinced us to start over with a
clean slate, with security as a fundamental design goal.
The result is our Secure Architecture for the Networked
Enterprise (SANE). The central design goals for our ar-
chitecture are as follows:

• Allow natural policies that are simple yet power-
ful. We seek an architecture that supports natural
policies that are independent of the topology and
the equipment used, e.g., “Allow everyone in group
sales to connect to the http server hosting documen-
tation.” This is in contrast to policies today that are
typically expressed in terms of topology-dependent
ACLs in firewalls. Through high-level policies, our
goal is to provide access control that is restrictive
(i.e., provides least privilege access to resources),
yet flexible, so the network does not become unus-
able.

• Enforcement should be at the link layer, to prevent
lower layers from undermining it. In contrast, it is
common in today’s networks for network-layer ac-
cess controls (e.g., ACLs in firewalls) to be under-
mined by more permissive connectivity at the link
layer (e.g., Ethernet and VLANs).

• Security achieved via ACLs, packet
filters, firewalls, NATs, VLANs.

• Prone to misconfigurations due to
human-error.

• Architecture support for :
• Natural, simple, policy expression.
• One trusted component.

• A Domain Controller that grants
source routing capability.

Ethane (2007)
Ethane: Taking Control of the Enterprise

Martìn Casado, Michael J. Freedman,
Justin Pettit, Jianying Luo,

and Nick McKeown
Stanford University

Scott Shenker
U.C. Berkeley and ICSI

ABSTRACT
This paper presents Ethane, a new network architecture for the
enterprise. Ethane allows managers to define a single network-
wide fine-grain policy, and then enforces it directly. Ethane cou-
ples extremely simple flow-based Ethernet switches with a central-
ized controller that manages the admittance and routing of flows.
While radical, this design is backwards-compatible with existing
hosts and switches.

We have implemented Ethane in both hardware and software,
supporting both wired and wireless hosts. Our operational Ethane
network has supported over 300 hosts for the past four months in
in Stanford University’s network, and this deployment experience
has significantly affected Ethane’s design.

Categories and Subject Descriptors
C.2.6 [Computer Communication Networks]: Internetworking;
C.2.1 [Computer Communication Networks]: Network Archi-
tecture and Design

General Terms
Design, Experimentation, Performance

Keywords
Network, Architecture, Security, Management

1. INTRODUCTION
Enterprise networks are often large, run a wide variety of appli-

cations and protocols, and typically operate under strict reliability
and security constraints; thus, they represent a challenging envi-
ronment for network management. The stakes are high, as busi-
ness productivity can be severely hampered by network misconfig-
urations or break-ins. Yet the current solutions are weak, making
enterprise network management both expensive and error-prone.
Indeed, most networks today require substantial manual configura-
tion by trained operators [11, 22, 23, 25] to achieve even moderate
security [24]. A Yankee Group report found that 62% of network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

downtime in multi-vendor networks comes from human-error and
that 80% of IT budgets is spent on maintenance and operations [16].

There have been many attempts to make networks more manage-
able and more secure. One approach introduces proprietary middle-
boxes that can exert their control effectively only if placed at net-
work choke-points. If traffic accidentally flows (or is maliciously
diverted) around the middlebox, the network is no longer managed
nor secure [25]. Another approach is to add functionality to ex-
isting networks—to provide tools for diagnosis, to offer controls
for VLANs, access-control lists, and filters to isolate users, to in-
strument the routing and spanning tree algorithms to support better
connectivity management, and then to collect packet traces to al-
low auditing. This can be done by adding a new layer of protocols,
scripts, and applications [1, 10] that help automate configuration
management in order to reduce the risk of errors. However, these
solutions hide the complexity, not reduce it. And they have to be
constantly maintained to support the rapidly changing and often
proprietary management interfaces exported by the managed ele-
ments.

Rather than building a new layer of complexity on top of the
network, we explore the question: How could we change the en-
terprise network architecture to make it more manageable? Our
answer is embodied in the architecture we describe here, called
Ethane. Ethane is built around three fundamental principles that
we feel are important to any network management solution:

The network should be governed by policies declared over high-
level names. Networks are most easily managed in terms of the en-
tities we seek to control—such as users, hosts, and access points—
rather than in terms of low-level and often dynamically-allocated
addresses. For example, it is convenient to declare which services
a user is allowed to use and to which machines they can connect.

Policy should determine the path that packets follow. There are
several reasons for policy to dictate the paths. First, policy might
require packets to pass through an intermediate middlebox; for ex-
ample, a guest user might be required to communicate via a proxy,
or the user of an unpatched operating system might be required to
communicate via an intrusion detection system. Second, traffic can
receive more appropriate service if its path is controlled; direct-
ing real-time communications over lightly loaded paths, important
communications over redundant paths, and private communications
over paths inside a trusted boundary would all lead to better ser-
vice. Allowing the network manager to determine the paths via
policy—where the policy is in terms of high-level names—leads
to finer-level control and greater visibility than is easily achievable
with current designs.

The network should enforce a strong binding between a packet
and its origin. Today, it is notoriously difficult to reliably deter-
mine the origin of a packet: Addresses are dynamic and change

1

• SANE was difficult to deploy.

• Incrementally deployable:
• No endhost modifications.
• Centralized controller manage

simple dumb “Ethane switches”.
• Co-exist with regular switches.

• Flow-based policy decision.

• Ethane switch OpenFlow

Key challenges / what’s missing?

From student discussion:
• Which plane certain features go in?
• Scalability, single point of failure
• Cost-benefit trade-off

• Performance wins?
• How to translate decision to data plane (is the intent same)?
• Control plane decisions in real-time given complex goals
• Control plane interface to network operators?

Your opinions

• Positives:
• Innovative, ambitious, new, promising, comprehensive
• Discussed flaws/limitations/challenges/future directions.
• No change to packet format.
• Decision plane is easy to customize, can enable more sohpisticated

algorithms based on network-wide constraints.

Your opinions

• Negatives:
• No evaluation, vague about implementation details
• Concerns about scalability, resilience/reliability.
• Overhead of such an approach, e.g. route convergence time with

dynamic network setting.
• Ignores middleboxes?
• Concerns about physical separation between data and

dissemination plane (?)
• Privacy issues around sharing information with the decision plane.

Your opinions

• Ideas:
• Implementing and evaluating the design.
• Protocols for dissemination plane.
• Greater focus on scalability and fault-tolerance.
• Cost-benefit trade-off.
• Data monitoring in the discovery plane.
• Which functionality should go in data plane vs control plane?
• Eliminate some of the key features of 4D to enable scalability. *
• Analyze 4D through the lens of end-to-end arguments.*
• How to incorporate in-network programmability? Another plane?

