
Host Networking
(Google Case Study)

ECE/CS598HPN

Radhika Mittal

Snap: a Microkernel Approach to
Host Networking

SOSP’19

Slides largely borrowed from the SOSP talk

Summary
Snap: Framework for developing and deploying packet
processing software
– Goals: Performance and Deployment Velocity
– Technique: Microkernel-inspired userspace approach

Snap supports multiple use cases:
– Andromeda: Network virtualization for Google Cloud Platform

[NSDI 2018]
– Espresso: Edge networking [SIGCOMM 2017]
– Traffic shaping for Bandwidth Enforcement
– New: High-performance host communication with “Pony Express”

3x throughput efficiency (vs kernel TCP), 5M IOPS, and
weekly releases

Motivation

• Growing performance-demanding packet processing
needs at Google

• The ability to rapidly develop and deploy new
features is just as important!

Monolithic (Linux) Kernel

Deployment Velocity:
• Smaller pool of software developers
• More challenging development environment
• Must drain and reboot a machine to roll out

new version
• Typically months to release new feature
Performance:
• Overheads from system calls, fine-grained

synchronization, interrupts, and more.

LibraryOS and OS Bypass

Networking logic in application binaries
Examples: Arrakis, mTCP, Ix, ZygOS, and more

Deployment Velocity:
• Difficult to release changes to the fleet
• App binaries may go months between releases
Performance:
• Can be very fast
• But typically requires spin-polling in every

application
• Benefits of centralization (i.e., scheduling) lost
• Delegates all policy to NIC

Microkernel Approach

Deployment Velocity:
• Decouples release cycles from application and kernel binaries
• Transparent upgrade with iterative state transfer
Performance:
• Fast! Leverages kernel bypass and many-core CPUs
• Maintains centralization of a kernel
• Can implement rich scheduling/multiplexing policies

Hoists functionality to a
separate userspace process

Snap Architecture

Snap Engine

Snap Engine Scheduling Modes

Dedicated Cores
– Static provisioning of N cores to run engines
– Simple and best for some situations.
– Provisioning for the worst-case is wasteful
– Provisioning for the average case leads to high tail latency

Snap Engine Scheduling Modes

Spreading Engines
– Bind each engine to a unique kernel thread
– Interrupts triggered from NIC or application to

schedule on-demand
– Leverages new micro-quanta kernel scheduling

class for tighter latency
– Can provide best tail latency
– Scheduling pathologies and overheads

Snap Engine Scheduling Modes

Compacting Engines
– Compacts engines to as few cores as possible
– Periodic polling of queuing delays to re-balance

engines to more cores
– Can provide best CPU efficiency.
– Timely detection queue build-up.

High Performance Communication

Pony Express Communication Stack
• Implement a full-fledged reliable transport and interface
• RDMA-like operation interface to applications
• Two-sided for classic RPC
• One-sided (pseudo RDMA) operations for avoiding

invocation of application thread scheduler
• Custom one-sided operations to avoid shortcomings

of RDMA (i.e., pointer chase over fabric)
• Custom transport and delay-based congestion

control (Timely)

High Performance Communication

Pony Express Communication Stack

Evaluation: Ping-pong latency

Evaluation: Throughput

Evaluation: Comparison with RDMA

• Switching to Pony Express “doubled the production
performance of the data analytics service”.

• Stringent RDMA rate limits applied to prevent NIC
cache overflow, and ensuing PFCs.

• Could be disabled with Pony Express.

Your Opinions

Pros:
• Diverse services (virtualization, packet processing, shaping)
• More sophisticated CPU scheduling (compared to earlier

works)
• Deployed (and tested) in production clusters over many

years.
• Focus on transparent upgrades and fast development cycles.

Your Opinions

Cons:
• Performance trade-offs over LibraryOS based appproaches.
• How to use SNAP in multi-tenant settings?
• How to handle failure or rollback during upgrades?
• API incompatibility
• Designing and configuring engines could be tricky.
• Security story seems a bit unconvincing
• Unconvincing flow control for one-sided operations.
• Context-switching overhead between PonyExpress and

application.

Your Opinions

Ideas:
• Can PonyExpress be extended to transport outside of

datacenters?
• Synchronous API over Snap?
• Better scheduling and scaling for CPU
• Is Snap is a good for IoT/edge devices?
• Support multi-threaded Snap engines
• Comparison with other transport stacks.

