
Kernel Bypass

ECE/CS598HPN

Radhika Mittal

Performance overheads in kernel stack

Performance overheads in kernel stack

• Shared listening socket.
• Lack of connection affinity.
• System calls (context switching)
• Shared file descriptor space, heavy file descriptors
• Interrupts
• Extra copy and buffering
• Heavy-weight data structures (sk_buff)
• Queuing delays
• CPU scheduling delays.
• Inefficient processing.

Performance overheads in kernel stack

• Shared listening socket.
• Lack of connection affinity.
• System calls (context switching).
• Shared file descriptor space, heavy file descriptors.
• Interrupts.
• Extra copy and buffering.
• Heavy-weight data structures (sk_buff).
• Queuing delays.
• CPU scheduling delays.
• Inefficient processing.

Somewhat
addressed by

MegaPipe

MegaPipe Performace

80% CPU
cycles spent in

packet
processing in

kernel.

Kernel Bypass Packet I/O

Dataplane Development Kit (DPDK)

Source:	https://blog.selectel.com/introduction-dpdk-architecture-principles/

Dataplane Development Kit (DPDK)

• User-space packet processing (kernel bypass).
• Avoid context switching overhead.

• Poll Mode Driver (PMD).
• Avoid interrupt processing overhead.
• Keeps a core busy.

•Memory usage optimizations
• Light-weight mbufs.
• Memory pools that use hugepages, cache alignment, etc.
• Lockless ring buffers.

Other examples

•NetMap
• In-kernel module for efficient packet processing.
• Light-weight packet buffers.
• Fewer memory copies.
• Possibly interrupt-driven.

• Packet Shader
• Modified packet I/O engine in the kernel.
• Fetches packets through a combination of interrupts and polling.
• Processes packets using GPU in userspace.

Kernel Bypass Packet I/O Engine

• Provide mechanisms for delivering packets to
user space.

•Do not implement a network stack.

mTCP

• User-space TCP/IP stack built over kernel-
bypass packet I/O engines.
• Implementation in paper over PacketShader.
• DPDK based implementation also available.

mTCP

mTCP

mTCP -- Issues

•Dedicated threads for the TCP stack.
• Avoid intrusive inter-twining of application and

TCP processing.
• Batching to reduce switching overheads.
• Adds latency.

• Security vulnerabilities with user-space
network stack.

IX: A Protected Dataplane Operating
System for High Throughput and Low

Latency

Adam Belay, George Prekas, Ana Klimovic,
Samuel Grossman, Christos Kozyrakis, Edouard Bugnion

OSDI’14 (Best Paper)

Slides borrowed from Adam’s OSDI talk.

HW is fast

HW is fast, but SW is the bottleneck

IX closes the SW performance gap

Why is SW slow?

Problem: 1980’s Software Architecture

Alternatives

• Kernel-bypass user-space stacks (e.g. mTCP)
• Lack of protection between app and network stack.

• Hardware support:
• TCP Offload Engines (TOE)
• RDMA

IX Key Design Decisions

IX Key Design Decisions

• Separation of control plane and dataplane
• Control plane handles resource allocation.

• Run to completion packet processing.
• Adaptive Batching
• Zero-copy
• Synchronization-free processing

IX: Separation of Control and Data Plane

IX: Separation of Control and Data Plane IX: Separation of Control and Data Plane

IX: Separation of Control and Data Plane IX: Separation of Control and Data Plane

Three-way isolation

• Between IX control plane, dataplane, and untrusted user
code.

• Use modern hardware virtualization techniques.

Detour: what is virtualization?

• Trick a guest OS into believing it has direct access to
hardware (CPU, NIC, etc).

• Hypervisor or Virtual Machine Monitor (VMM) controls the
guest VM’s access, provides isolation, etc.

• Hardware virtualization techniques (e.g. Intel’s VT-x) allow
guest VMs to directly access hardware in a controlled manner.
• Through extra privilege level (non-root ring 0) for guest OS.
• Less privileged than root ring 0 (Host OS / Hypervisor)
• More privileged than ring 3 (guest applications)

IX: Separation of Control and Data Plane IX: Separation of Control and Data Plane

IX: Separation of Control and Data Plane IX: Separation of Control and Data Plane

IX: Separation of Control and Data Plane IX: Separation of Control and Data Plane

IX Execution Pipeline

Design (1): Run to Completion

Design (2): Adaptive Batching

Other Aspects

Evaluation

Your Opinions

• Pros
• Protection, along with low latency and high throughput.

• Run-to-completion
• Adaptive batching
• Synchronization-free processing
• Zero-copy

• Innovative reuse the idea of control and data plane separation.

Your Opinions

• Cons
• Possibility of internal memory fragmentation.
• How are batching bounds determined?
• Performance comparison with RDMA?
• Insufficient details about control plane.
• Needs new API
• Certain assumptions from the application:

• What if application is too slow?
• Co-existence with conventional VM settings.

Your Opinions

• Ideas
• Resource allocation policies!
• Redo evaluation after super-optimizing Linux.
• Better memory management.
• Use similar hardware virtualization techniques for other usecases.
• Are there any backwards compatible solution to the problem?

Next Class: RDMA

• FaRM: heavy on systems concepts.

• IRN: heavy on networking concepts.

