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Performance overheads in kernel stack



Performance overheads in kernel stack

* Shared listening socket.

* Lack of connection affinrty.

* System calls (context switching)

* Shared file descriptor space, heavy file descriptors
* Interrupts

* Extra copy and buffering

* Heavy-welight data structures (sk_buff)

* Queuing delays

* CPU scheduling delays.

* Inefficient processing.
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MegaPipe Performace
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Kernel Bypass Packet I/O



Dataplane Development Kit (DPDK)

Linux Kernel without DPDK Linux Kernel with DPDK

User Space
DPDK Libraries

Linux Kernel

Kernel Space
Network Driver

Network
Hardware

Source: https://blog.selectel.com/introduction-dpdk-architecture-principles/



Dataplane Development Kit (DPDK)

* User-space packet processing (kernel bypass).
* Avold context switching overhead.

* Poll Mode Driver (PMD).

* Avold interrupt processing overhead.
* Keeps a core busy.

* Memory usage optimizations

* Light-weight mbufs.

* Memory pools that use hugepages, cache alignment, etc.
* L ockless ring buffers.




Other examples

* NetMap

* |In-kernel module for efficient packet processing,
* Light-weight packet buffers.

* Fewer memory copies.

* Possibly interrupt-driven.

* Packet Shader
* Modified packet I/O engine in the kernel.
* Fetches packets through a combination of interrupts and polling.
* Processes packets using GPU in userspace.



Kernel Bypass Packet |/O Engine

* Provide mechanisms for delivering packets to
user space.

* Do not implement a network stack.



mTCP

* User-space T CP/IP stack built over kernel-

bypass packet /O engines.
* Implementation in paper over PacketShader.
* DPDK based implementation also available.



mTCP
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M T CP -- Issues

e Dedicated threads for the TCP stack.

* Avoid intrusive inter-twining of application and
TCP processing.

* Batching to reduce switching overheads.

* Adds latency.

* Security vulnerabilities with user-space
network stack.



|X: A Protected Dataplane Operating
System for High Throughput and Low
Latency

Adam Belay, George Prekas, Ana Klimovic,
Samuel Grossman, Christos Kozyrakis, Edouard Bugnion

OSDI’'14 (Best Paper)

Slides borrowed from Adam’s OSDI talk.



HWYV is fast

64-byte TCP Echo:
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HWYV is fast, but SWV is the bottleneck

64-byte TCP Echo:
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|X closes the SWV performance gap

64-byte TCP Echo:
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Why is SWV slow!?
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Problem: 1 980’s Software Architecture

* Berkeley sockets, designed for CPU time sharing
 Today’s large-scale datacenter workloads:

Hardware: Dense Multicore + 10 GbE (soon 40)

- APl scalability critical!
- Gap between compute and RAM -> Cache behavior matters

- Packet inter-arrival times of 50 ns

Scale out access patterns
- Fan-in -> Large connection counts, high request rates
- Fan-out -> Tail latency matters!



Alternatives

* Kernel-bypass user-space stacks (e.g. mTCP)
* Lack of protection between app and network stack.

* Hardware support:

* TCP Offload Engines (TOE)
« RDMA



|X Key Design Decisions



|X Key Design Decisions

* Separation of control plane and dataplane
* Control plane handles resource allocation.

* Run to completion packet processing.
* Adaptive Batching
* /ero-copy
* Synchronization-free processing



|X: Separation of Control and Data Plane
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|X: Separation of Control and Data Plane
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|X: Separation of Control and Data Plane
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Three-way isolation

* Between IX control plane, dataplane, and untrusted user
code.

* Use modern hardware virtualization techniques.



Detour: what is virtualization?

* Trick a guest OS Into believing it has direct access to
hardware (CPU, NIC, etc).

* Hypervisor or Virtual Machine Monitor (VMM) controls the
suest VM's access, provides isolation, etc.

* Hardware virtualization techniques (e.g. Intel's VI1-x) allow

suest VMs to directly access hardware in a controlled manner.
* Through extra privilege level (non-root ring O) for guest OS.
* Less privileged than root ring O (Host OS / Hypervisor)
* More privileged than ring 3 (guest applications)



|X: Separation of Control and Data Plane
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|X: Separation of Control and Data Plane
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|X: Separation of Control and Data Plane
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| X Execution Pipeline
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Design (1): Run to Completion
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Removes Scheduling Unpredictably



Design (2): Adaptive Batching
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Other Aspects

* Design (3): Flow consistent hashing

— Synchronization & coherence free operation
* Design (4): Native zero-copy API

— Flow control exposed to application

* Libix: Libevent-like event-based programming

* |X prototype implementation
— Dune, DPDK, LWIP, ~40K SLOC of kernel code



Evaluation

e Comparison IX to Linux and mTCP [NSDI '14]
e TCP microbenchmarks and Memcached
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Your Opinions

e Pros

* Protection, along with low latency and high throughput.
* Run-to-completion
* Adaptive batching
* Synchronization-free processing
* /ero-copy

* Innovative reuse the idea of control and data plane separation.



Your Opinions

* Cons
* Possibility of internal memory fragmentation.
* How are batching bounds determined?
* Performance comparison with RDMAV
Insufficient detalls about control plane.

Needs new AP

Certain assumptions from the application:
* What if application is too slow?

* Co-existence with conventional VM settings.



Your Opinions

* |deas
* Resource allocation policies!
Redo evaluation after super-optimizing Linux.
Better memory management.
Use similar hardware virtualization techniques for other usecases.
Are there any backwards compatible solution to the problem?



Next Class: RDMA

* FaRM: heavy on systems concepts.

* |IRN: heavy on networking concepts.



