Kernel Bypass

ECE/CS598HPN

Radhika Mittal

Performance overheads in kernel stack

Performance overheads in kernel stack

* Shared listening socket.

* Lack of connection affinrty.

* System calls (context switching)

* Shared file descriptor space, heavy file descriptors
* Interrupts

* Extra copy and buffering

* Heavy-welight data structures (sk_buff)

* Queuing delays

* CPU scheduling delays.

* Inefficient processing.

Performance overheads in kernel stack

* Shared listening socket. >omewhat
* Lack of connection dffinity. addressgd Dy
» System calls (context switching). MegaPipe

* Shared file descriptor space, heavy file descriptors.
* Interrupts.

* Extra copy and buffering,

* Heavy-weight data structures (sk_buff).

* Queuing delays.

* CPU scheduling delays.

* Inefficient processing.

MegaPipe Performace

—{J—Baseline Per-Core Efficiency &' MegaPipe

R " g0% CPU
% """ Beeeep..... ©
g 12 %0 < Cycles spentin
= 09 60 z packet
206 - 40§ processing in
=14

=

é 03 - d |:I 0 kernel.

o B LI [T

1 2 3 4 5 6 7 8
of CPU Cores

Kernel Bypass Packet I/O

Dataplane Development Kit (DPDK)

Linux Kernel without DPDK Linux Kernel with DPDK

User Space
DPDK Libraries

Linux Kernel

Kernel Space
Network Driver

Network
Hardware

Source: https://blog.selectel.com/introduction-dpdk-architecture-principles/

Dataplane Development Kit (DPDK)

* User-space packet processing (kernel bypass).
* Avold context switching overhead.

* Poll Mode Driver (PMD).

* Avold interrupt processing overhead.
* Keeps a core busy.

* Memory usage optimizations

* Light-weight mbufs.

* Memory pools that use hugepages, cache alignment, etc.
* L ockless ring buffers.

Other examples

* NetMap

* |In-kernel module for efficient packet processing,
* Light-weight packet buffers.

* Fewer memory copies.

* Possibly interrupt-driven.

* Packet Shader
* Modified packet I/O engine in the kernel.
* Fetches packets through a combination of interrupts and polling.
* Processes packets using GPU in userspace.

Kernel Bypass Packet |/O Engine

* Provide mechanisms for delivering packets to
user space.

* Do not implement a network stack.

mTCP

* User-space T CP/IP stack built over kernel-

bypass packet /O engines.
* Implementation in paper over PacketShader.
* DPDK based implementation also available.

mTCP

+@+-Linux =@ ‘REUSEPORT =-#- MegaPipe —¢—mTCP

[o
(@) O (| n
l J

Messages/sec (x 10%)

W
L

o

o 1 2 4 8
Number of CPU Cores

mTCP

100% -
80% -

60% -

40%

CPU Utilization

20%

OKernel OPacket /O GTCP/IP B Application
0% - —— —= ; —= =
Linux-2.6 Linux-3.10 MegaPipe mTCP

1

M T CP -- Issues

e Dedicated threads for the TCP stack.

* Avoid intrusive inter-twining of application and
TCP processing.

* Batching to reduce switching overheads.

* Adds latency.

* Security vulnerabilities with user-space
network stack.

|X: A Protected Dataplane Operating
System for High Throughput and Low
Latency

Adam Belay, George Prekas, Ana Klimovic,
Samuel Grossman, Christos Kozyrakis, Edouard Bugnion

OSDI’'14 (Best Paper)

Slides borrowed from Adam’s OSDI talk.

HWYV is fast

64-byte TCP Echo:

60
50

40

M Linux 20

IX 10

0

Microseconds

Millions
D (@) 00 (@]

N

Requests per Second

HWYV is fast, but SWV is the bottleneck

64-byte TCP Echo:

60
50

40

M Linux 20

IX 10

0

—

Microseconds

1 4.8x
Gap

o

Millions -~
00

()]

B

8.8x

' Gap

N

o

—

Requests per Second

|X closes the SWV performance gap

64-byte TCP Echo:

60 10
50 c -
o8
40 36 | -
M Linux 20 4
IX 10 2 -
0 - (0

Microseconds Requests per Second

Why is SWV slow!?

/=] verel entry point
function
~——> function call
D file in which function appears
driver-specific function

- data of type T

. data ownership (writes or refers to)

ey BN e SN Py |

St data copy

’ virtual function through pointer f

- thread scheduling (wake-up or start)

E) schedulable thread

] { e csnmest | |

L retr receme s |

= - —

_netsas)
Petgo.ecelve sibi) nande g0

s

—

Created by: Arnout Vandecappelle
http://www.linuxfoundation.org/collaborate/workgroups/networking/kernel_flow 6

Problem: 1 980’s Software Architecture

* Berkeley sockets, designed for CPU time sharing
 Today’s large-scale datacenter workloads:

Hardware: Dense Multicore + 10 GbE (soon 40)

- APl scalability critical!
- Gap between compute and RAM -> Cache behavior matters

- Packet inter-arrival times of 50 ns

Scale out access patterns
- Fan-in -> Large connection counts, high request rates
- Fan-out -> Tail latency matters!

Alternatives

* Kernel-bypass user-space stacks (e.g. mTCP)
* Lack of protection between app and network stack.

* Hardware support:

* TCP Offload Engines (TOE)
« RDMA

|X Key Design Decisions

|X Key Design Decisions

* Separation of control plane and dataplane
* Control plane handles resource allocation.

* Run to completion packet processing.
* Adaptive Batching
* /ero-copy
* Synchronization-free processing

|X: Separation of Control and Data Plane

CP
DP DP

Userspace

Kernelspace Host
Kernel

|X: Separation of Control and Data Plane

CP
DP DP

Userspace

Kernelspace Host @ @ @ @

Kernel RX RX RX RX

|X: Separation of Control and Data Plane

Ring 3 IX CP

———————————————————————————————————

Guest

- 8 | .

Host Host @ @ @ @

Ring 0 Kernel RX RX RX RX

Three-way isolation

* Between IX control plane, dataplane, and untrusted user
code.

* Use modern hardware virtualization techniques.

Detour: what is virtualization?

* Trick a guest OS Into believing it has direct access to
hardware (CPU, NIC, etc).

* Hypervisor or Virtual Machine Monitor (VMM) controls the
suest VM's access, provides isolation, etc.

* Hardware virtualization techniques (e.g. Intel's VI1-x) allow

suest VMs to directly access hardware in a controlled manner.
* Through extra privilege level (non-root ring O) for guest OS.
* Less privileged than root ring O (Host OS / Hypervisor)
* More privileged than ring 3 (guest applications)

|X: Separation of Control and Data Plane

Ring 3 IX CP

———————————————————————————————————

Guest

- 8 | .

Host Host @ @ @ @

Ring 0 Kernel RX RX RX RX

|X: Separation of Control and Data Plane

Ring 3 IX CP

Guest

K e

Linux kernel @ @ @ @
Host
Ringo DI Rx RX RX RX

|X: Separation of Control and Data Plane

Memcached

Ring 3

B e, .

~ Linux kernel
Host

Guest
Ring 0

| X Execution Pipeline

Ring 3

Event
Conditions

event-driven app

libIX

Batched
Syscalls

Guest
Ring 0

Design (1): Run to Completion

Ring 3 .
event-driven app
Event ib Batched
Conditions IbIX Syscalls
Guest
Ring 0
RX
FIFO

Improves Data-Cache Locality
Removes Scheduling Unpredictably

Design (2): Adaptive Batching

Ring 3 .
event-driven app
Event ib Batched
Conditions IbIX Syscalls
&) (@ &) (&,
R 1 O T 1 O T
Guest
Ring 0

Adaptive Batch
RX Calculation
FIFO
o
RX .y

Improves Instruction-Cache Locality and Prefetching

) (0

Other Aspects

* Design (3): Flow consistent hashing

— Synchronization & coherence free operation
* Design (4): Native zero-copy API

— Flow control exposed to application

* Libix: Libevent-like event-based programming

* |X prototype implementation
— Dune, DPDK, LWIP, ~40K SLOC of kernel code

Evaluation

e Comparison IX to Linux and mTCP [NSDI '14]
e TCP microbenchmarks and Memcached

]- ~ 25 Linux Hosts

4x10GbE
w/ L3+L4 bond

1x10GbE

°)

Messages/sec (x 10

TCP Echo: Multicore Scalability

for Short Connections

—H&— IX 10GbE
B IX4x10GbE
—o— Linux 10GbE

—@— Linux 4x10GbE

—=2— mTCP 10GbE

Saturates
1x10GbE

Number of CPU cores

Your Opinions

e Pros

* Protection, along with low latency and high throughput.
* Run-to-completion
* Adaptive batching
* Synchronization-free processing
* /ero-copy

* Innovative reuse the idea of control and data plane separation.

Your Opinions

* Cons
* Possibility of internal memory fragmentation.
* How are batching bounds determined?
* Performance comparison with RDMAV
Insufficient detalls about control plane.

Needs new AP

Certain assumptions from the application:
* What if application is too slow?

* Co-existence with conventional VM settings.

Your Opinions

* |deas
* Resource allocation policies!
Redo evaluation after super-optimizing Linux.
Better memory management.
Use similar hardware virtualization techniques for other usecases.
Are there any backwards compatible solution to the problem?

Next Class: RDMA

* FaRM: heavy on systems concepts.

* |IRN: heavy on networking concepts.

