
High Performance
Network Stack

ECE/CS598HPN

Radhika Mittal

Rx Processing in the kernel

Memory

Memory

Tx Processing in the kernel

Memory

Various sources of
performance overheads

MegaPipe: A New Programming
Interface for Scalable Network I/O

Sangjin Han, Scott Marshal,
Byung-Gon Chun, Sylvia Ratnasamy

OSDI’12

Content borrowed from Sangjin’s OSDI talk

Two Types of Network Workloads

• Bulk Transfer
• Large files (HDFS)

• Message-oriented
• Short connections or small messages

(HTTP, RPCs, DB, key-value stores, etc)

Two Types of Network Workloads

• Bulk Transfer
• Large files (HDFS)
• A half CPU core can saturate 10Gbps link

• Message-oriented
• Short connections or small messages

(HTTP, RPCs, DB, key-value stores, etc)
• CPU-intensive

BSD Socket API Performance Issues

BSD Socket API Performance Issues

BSD Socket API Performance Issues

Microbenchmarks: how bad?

Microbenchmarks: how bad?

Microbenchmarks: how bad?

Microbenchmarks: how bad?

MegaPipe Design

Focus: low-overhead and multi-core scalability.

MegaPipe: Overview

Key Primitives

How channels help?

1. I/O Batching

How channels help?

How channels help?

2. Listening Socket Partitioning

2. Listening Socket Partitioning

2. Listening Socket Partitioning

How channels help?

How channels help?

3. Light-weight Sockets

Evaluation: Microbenchmarks

Evaluation: Microbenchmarks

Evaluation: Macrobenchmarks

Evaluation: Macrobenchmarks

Evaluation: memcached

Evaluation: memcached

Evaluation: nginx

Conclusion

Your Opinions

Pros:
• Light-weight socket, batching, listening socket partitioning.
• Thorough evaluation of performance bottlenecks.
• Significant performance improvement (for nginx).

Your Opinions

Cons:
• Lack of backwards-compatibility.
• How much effort is required to port an application to use

MegaPipe?
• Batching may impact latency.
• What do we lose out on by using lwsockets?
• Does not support (dynamic) load-balancing for partitioned

sockets.
• Scaling beyond 8 cores?
• Kernel modifications may be difficult.
• Why not use MPI or RDMA?

Your Opinions

Ideas:
• Secure accept queue sharing with access control
• Is MegaPipe useful beyond network I/O?
• Beyond Linux?
• Load balancing for socket partitioning.
• Lower syscall cost.
• Combining RouteBricks with MegaPipe.
• What hardware optimizations can be applied?
• Network IO interface that is both high performance and

POSIX-compliant.
• Automate application modifications to use MegaPipe.

Discuss!

What other sources of performance overhead remain?

