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Two Types of Network Workloads

• Bulk Transfer
• Large files (HDFS)
• A half CPU core can saturate 10Gbps link

• Message-oriented
• Short connections or small messages 

(HTTP, RPCs, DB, key-value stores, etc)
• CPU-intensive
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MegaPipe Design

Focus: low-overhead and multi-core scalability.



MegaPipe: Overview



Key Primitives
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3. Light-weight Sockets
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Evaluation: nginx



Conclusion



Your Opinions 

Pros:
• Light-weight socket,  batching, listening socket partitioning.
• Thorough evaluation of performance bottlenecks.
• Significant performance improvement (for nginx).



Your Opinions 

Cons:
• Lack of backwards-compatibility. 
• How much effort is required to port an application to use 

MegaPipe? 
• Batching may impact latency. 
• What do we lose out on by using lwsockets?
• Does not support (dynamic) load-balancing for partitioned 

sockets.
• Scaling beyond 8 cores?
• Kernel modifications may be difficult. 
• Why not use MPI or RDMA?



Your Opinions 

Ideas:
• Secure accept queue sharing with access control
• Is MegaPipe useful beyond network I/O? 
• Beyond Linux?
• Load balancing for socket partitioning.
• Lower syscall cost. 
• Combining RouteBricks with MegaPipe. 
• What hardware optimizations can be applied? 
• Network IO interface that is both high performance and 

POSIX-compliant. 
• Automate application modifications to use MegaPipe.  



Discuss!

What other sources of performance overhead remain? 


