
NetChain: Scale-Free Sub-RTT Coordination

Xin Jin1, Xiaozhou Li2, Haoyu Zhang3, Nate Foster2,4,
Jeongkeun Lee2, Robert Soulé2,5, Changhoon Kim2, Ion Stoica6

1Johns Hopkins University, 2Barefoot Networks, 3Princeton University,
4Cornell University, 5Università della Svizzera italiana, 6 UC Berkeley

Abstract
Coordination services are a fundamental building block
of modern cloud systems, providing critical functionali-
ties like configuration management and distributed lock-
ing. The major challenge is to achieve low latency
and high throughput while providing strong consistency
and fault-tolerance. Traditional server-based solutions
require multiple round-trip times (RTTs) to process a
query. This paper presents NetChain, a new approach
that provides scale-free sub-RTT coordination in dat-
acenters. NetChain exploits recent advances in pro-
grammable switches to store data and process queries
entirely in the network data plane. This eliminates the
query processing at coordination servers and cuts the
end-to-end latency to as little as half of an RTT—clients
only experience processing delay from their own soft-
ware stack plus network delay, which in a datacenter set-
ting is typically much smaller. We design new proto-
cols and algorithms based on chain replication to guar-
antee strong consistency and to efficiently handle switch
failures. We implement a prototype with four Barefoot
Tofino switches and four commodity servers. Evaluation
results show that compared to traditional server-based
solutions like ZooKeeper, our prototype provides orders
of magnitude higher throughput and lower latency, and
handles failures gracefully.

1 Introduction
Coordination services (e.g., Chubby [1], ZooKeeper [2]
and etcd [3]) are a fundamental building block of mod-
ern cloud systems. They are used to synchronize ac-
cess to shared resources in a distributed system, provid-
ing critical functionalities such as configuration manage-
ment, group membership, distributed locking, and bar-
riers. These various forms of coordination are typically
implemented on top of a key-value store that is replicated
with a consensus protocol such as Paxos [4] for strong
consistency and fault-tolerance.

High-throughput and low-latency coordination is es-
sential to support interactive and real-time distributed ap-
plications, such as fast distributed transactions and sub-
second data analytics tasks. State-of-the-art in-memory
transaction processing systems such as FaRM [5] and

DrTM [6], which can process hundreds of millions of
transactions per second with a latency of tens of mi-
croseconds, crucially depend on fast distributed locking
to mediate concurrent access to data partitioned in mul-
tiple servers. Unfortunately, acquiring locks becomes a
significant bottleneck which severely limits the transac-
tion throughput [7]. This is because servers have to spend
their resources on (i) processing locking requests and (ii)
aborting transactions that cannot acquire all locks under
high-contention workloads, which can be otherwise used
to execute and commit transactions. This is one of the
main factors that led to relaxing consistency semantics
in many recent large-scale distributed systems [8, 9], and
the recent efforts to avoid coordination by leveraging ap-
plication semantics [10, 11]. While these systems are
successful in achieving high throughput, unfortunately,
they restrict the programming model and complicate the
application development. A fast coordination service
would enable high transaction throughput without any of
these compromises.

Today’s server-based solutions require multiple end-
to-end round-trip times (RTTs) to process a query [1, 2,
3]: a client sends a request to coordination servers; the
coordination servers execute a consensus protocol, which
can take several RTTs; the coordination servers send a re-
ply back to the client. Because datacenter switches pro-
vide sub-microsecond per-packet processing delay, the
query latency is dominated by host delay which is tens
to hundreds of microseconds for highly-optimized im-
plementations [12]. Furthermore, as consensus protocols
do not involve sophisticated computations, the workload
is communication-heavy and the throughput is bottle-
necked by the server IO. While state-of-the-art solutions
such as NetBricks [12] can boost a server to process tens
of millions of packets per second, it is still orders of mag-
nitude slower than a switch.

We present NetChain, a new approach that lever-
ages the power and flexibility of new-generation pro-
grammable switches to provide scale-free sub-RTT coor-
dination. In contrast to server-based solutions, NetChain
is an in-network solution that stores data and processes
queries entirely within the network data plane. We stress
that NetChain is not intended to provide a new theoretical

answer to the consensus problem, but rather to provide a
systems solution to the problem. Sub-RTT implies that
NetChain is able to provide coordination within the net-
work, and thus reduces the query latency to as little as
half of an RTT. Clients only experience processing de-
lays caused by their own software stack plus a relatively
small network delay. Additionally, as merchant switch
ASICs [13, 14] can process several billion packets per
second (bpps), NetChain achieves orders of magnitude
higher throughput, and scales out by partitioning data
across multiple switches, which we refer to as scale-free.

The major challenge we address in this paper is build-
ing a strongly-consistent, fault-tolerant, in-network key-
value store within the functionality and resource limit
of the switch data plane. There are three aspects of
our approach to address this challenge. (i) We lever-
age the switch on-chip memory to store key-value items,
and process both read and write queries directly in the
data plane. (ii) We design a variant protocol of chain
replication [15] to ensure strong consistency of the key-
value store. The protocol includes a routing protocol in-
spired by segment routing to correctly route queries to
switches according to the chain structure, and an order-
ing protocol based on sequence numbers to handle out-
of-order packet delivery. (iii) We design an algorithm for
fast failover that leverages network topologies to quickly
resume a chain’s operation with remaining nodes, and
an algorithm for failure recovery that restores the partial
chains to the original fault-tolerance level and leverages
virtual groups to minimize disruptions.

NetChain is incrementally deployable. The NetChain
protocol is compatible with existing routing protocols
and services already in the network. NetChain only
needs to be deployed on a few switches to be effective,
and its throughput and storage capacity can be expanded
by adding more switches. In summary, we make the fol-
lowing contributions.
• We design NetChain, a new strongly-consistent, fault-

tolerant, in-network key-value store that exploits new-
generation programmable switches to provide scale-
free sub-RTT coordination.

• We design protocols and algorithms tailored for pro-
grammable switches to ensure strong consistency (§4)
and fault-tolerance (§5) of the key-value store.

• We implement a NetChain prototype with Barefoot
Tofino switches and commodity servers (§7). Evalu-
ation results show that compared to traditional server-
based solutions like ZooKeeper, NetChain provides
orders of magnitude higher throughput and lower la-
tency, and handles failures gracefully (§8).

Recently there has been an uptake in leveraging pro-
grammable switches to improve distributed systems.
NetChain builds on ideas from two pioneering works in
particular: NetPaxos [16, 17] and NetCache [18]. Net-

Server Switch

Example NetBricks [12] Tofino [13]
Packets per sec. 30 million a few billion
Bandwidth 10-100 Gbps 6.5 Tbps
Processing delay 10-100 µs < 1µs

Table 1: Comparison of packet processing capabilities.

Paxos uses programmable switches to accelerate consen-
sus protocols, but it does not offer a replicated key-value
service, and the performance is bounded by the overhead
of application-level replication on servers. NetCache
uses programmable switches to build a load-balancing
cache for key-value stores, but the cache is not repli-
cated and involves servers for processing write queries.
In comparison, NetChain builds a strongly-consistent,
fault-tolerant key-value store in the network data plane.
We discuss NetChain’s limitations (e.g., storage size) and
future work in §6, and related work in detail in §9.

2 Background and Motivation
2.1 Why a Network-Based Approach?
A network data-plane-based approach offers significant
advantages on latency and throughput over traditional
server-based solutions. Moreover, such an approach is
made possible by the emerging programmable switches
such as Barefoot Tofino [13] and Cavium XPliant [19].

Eliminating coordination latency overhead. The mes-
sage flow for a coordination query is:

client→ coordination servers→ client.
Coordination servers execute a consensus protocol such
as Paxos [4] to ensure consistency, which itself can take
multiple RTTs. NOPaxos [20] uses the network to order
queries and eliminates the message exchanges between
coordination servers. It reduces the latency to two mes-
sage delays or one RTT, which is the lower bound for
server-based solutions. As shown in Table 1, since data-
center switches only incur sub-microsecond delay, the
host delay dominates the query latency. By moving co-
ordination to the network, the message flow becomes:

client→ network switches→ client.
Because the network time is negligible compared to host
delay, a network-based solution is able to cut the query
latency to one message delay or sub-RTT, which is bet-
ter than the lower-bound of server-based solutions. Note
that the sub-RTT latency is not a new theoretical answer
to the consensus problem, but rather a systems solution
that eliminates the overhead on coordination servers.

Improving throughput. The workload of coordi-
nation systems is communication-heavy, rather than
computation-heavy. While varying in their details, con-
sensus protocols typically involve multiple rounds of
message exchanges, and in each round the nodes exam-
ine their messages and perform simple data comparisons

S0 S1 S2

Head Replica Tail

Write
Request

Read
Request

Read/Write
Reply

S0

S1

S2

Primary Backup

Read/Write
Request

Write Request
Read/Write

Reply

(a) Classical primary-backup. (b) Chain replication.

Figure 1: Primary-backup and chain replication.

and updates. The throughput is determined by how fast
the nodes can process messages. Switches are specifi-
cally designed and deeply optimized for packet process-
ing and switching. They provide orders of magnitude
higher throughput than highly-optimized servers (Ta-
ble 1). Alternative designs like offloading to NICs and
leveraging specialized chips (FPGAs, NPUs or ASICs)
either do not provide comparable performance to switch
ASICs or are not immediately deployable due to cost and
deployment complexities.

2.2 Why Chain Replication?
Given the benefits, the next question is how to build a
replicated key-value store with programmable switches.
NetCache [18] has shown how to leverage the switch on-
chip memory to build a key-value store on one switch.
Conceivably, we can use the key-value component of
NetCache and replicate the key-value store on multiple
switches. But the challenge in doing so would be how to
ensure strong consistency and fault-tolerance.

Vertical Paxos. We choose to realize Vertical Paxos [21]
in the network to address this challenge. Vertical Paxos is
a variant of the Paxos algorithm family. It divides a con-
sensus protocol into two parts, i.e., a steady state proto-
col and a reconfiguration protocol. The division of labor
makes it a perfect fit for a network implementation, be-
cause the two parts can be naturally mapped to the net-
work data and control planes. (i) The steady state pro-
tocol is typically a primary-backup (PB) protocol, which
handles read and write queries and ensures strong consis-
tency. It is simple enough to be implemented in the net-
work data plane. In addition, it only requires f +1 nodes
to tolerate f node failures, which is lower than 2 f +1
nodes required by the ordinary Paxos, due to the exis-
tence of the reconfiguration protocol. This is important
as switches have limited on-chip memory for key-value
storage. Hence, given the same number of switches, the
system can store more items with Vertical Paxos. (ii)
The heavy lifting for fault-tolerance is offloaded to the
reconfiguration protocol, which uses an auxiliary mas-
ter to handle reconfiguration operations like joining (for
new nodes) and leaving (for failed nodes). The auxil-
iary master can be mapped to the network control plane,
as modern datacenter networks already have a logically
centralized controller replicated on multiple servers.

NetChain (Vertical Paxos)

Auxiliary Master
(Reconfiguration Protocol)

Chain Replication
(Steady State Protocol)

Network
Controller

Host
Racks

S2 S3 S4 S5

S0 S1

(a) NetChain architecture.

ETH IP UDP OP KEY VALUES0 SEQS1 … Sk

NetChain routingL2/L3 routing inserted by head switch

read, write, delete, etc.reserved port #

SC

(b) NetChain packet format.

Figure 2: NetChain overview.

While it seems to move the fault-tolerance problem
from the consensus protocol to the auxiliary master, Ver-
tical Paxos is well-suited to NetChain because reconfig-
urations such as failures (on the order of minutes) are or-
ders of magnitude less frequent than queries (on the order
of microseconds). So handling queries and reconfigura-
tions are mapped to data and control planes, respectively.
Chain Replication. We design a variant of chain repli-
cation (CR) [15] to implement the steady state protocol
of Vertical Paxos. CR is a form of PB protocols. In the
classical PB protocol (Figure 1(a)), all queries are sent to
a primary node. The primary node needs to keep some
state to track each write query to each backup node, and
to retry or abort a query if it does not receive acknowl-
edgments from all backup nodes. Keeping the state and
confirming with all backup nodes are costly to imple-
ment with the limited resources and operations provided
by switch ASICs. In CR (Figure 1(b)), nodes are orga-
nized in a chain structure. Read queries are handled by
the tail; write queries are sent to the head, processed by
each node along the chain, and replied by the tail. Write
queries in CR use fewer messages than PB (n+1 instead
of 2n where n is the number of nodes). CR only requires
each node to apply a write query locally and then for-
ward the query. Receiving a reply from the tail is a direct
indication of query completion. Thus CR is simpler than
PB to be implemented in switches.

3 NetChain Overview
We design NetChain, an in-network coordination service
that provides sub-RTT latency and high throughput. It
provides a strongly-consistent, fault-tolerant key-value
store abstraction to applications (Figure 2(a)).
NetChain data plane (§4). We design a replicated key-
value store with programmable switches. Both read and

Match Action
Key = X (0xfb2d7326dd4e36ac) Read/Write RA[0]

Key = Y (0xfa21549a1e8926a7) Read/Write RA[5]

Key = Z (0xfbeb2c7e4db86208) Read/Write RA[2]

default Drop()

Register Array (RA)Match-Action Table

0
1
2
3
4
5

Figure 3: Key-value index and storage.

write queries are directly processed in the switch data
plane without controller involvement. We design a vari-
ant of CR to ensure strong consistency of the key-value
store. Coordination queries use a custom network format
based on UDP (Figure 2(b)) and the processing logic of
NetChain is invoked by a reserved UDP port.

NetChain control plane (§5). The controller handles
system reconfigurations such as switch failures, which
are orders of magnitude less frequent than read and write
queries. The controller is assumed to be reliable by
running a consensus protocol on multiple servers, as
required by Vertical Paxos. Note that NetChain can
also work with traditional distributed network control
planes. In such scenarios, we need to implement an aux-
iliary master for handling system reconfigurations, and
the network control plane should expose an interface for
NetChain to manage NetChain’s tables and registers in
switches. NetChain does not need access to any other
switch state, such as forwarding tables.

NetChain client. NetChain exposes a key-value store
API to applications. A NetChain agent runs in each host,
and translates API calls from applications to queries us-
ing our custom packet format. The agent gathers returned
packets from NetChain and generates API responses.
The complexity of the in-network key-value store is hid-
den from applications by the agent.

4 NetChain Data Plane

Problem statement. The data plane provides a repli-
cated, in-network key-value store, and handles read and
write queries directly. We implement CR to guarantee
strong consistency, which involves three specific prob-
lems: (R1) how to store and serve key-value items in
each switch; (R2) how to route queries through the
switches according to the chain structure; (R3) how to
cope with best-effort network transport (i.e., packet re-
ordering and loss) between chain switches.

Properties. NetChain provides strong consistency: (i)
reads and writes on individual keys are executed in some
sequential order, and (ii) the effects of successful writes
are reflected in subsequent reads. NetChain assumes
trustworthy components; otherwise, malicious compo-
nents can destroy these consistency guarantees.

Algorithm 1 ProcessQuery(pkt)
– sequence: the register array that stores sequence numbers
– value: the register array that stores values
– index: the match table that stores array locations of keys

1: loc← index[pkt.key]
2: if pkt.op == read then
3: Insert value header field pkt.val
4: pkt.val← value[loc]
5: else if pkt.op == write then
6: if isChainHead(pkt) then
7: sequence[loc]← sequence[loc]+1
8: pkt.seq← sequence[loc]
9: value[loc]← pkt.val

10: else if pkt.seq > sequence[loc] then
11: sequence[loc]← pkt.seq
12: value[loc]← pkt.val
13: else Drop()
14: Update packet header and forward

4.1 Data Plane Key-Value Storage
On-chip key-value storage. Modern programmable
switch ASICs (e.g., Barefoot Tofino [13]) provide on-
chip register arrays to store user-defined data that can be
read and modified for each packet at line rate. NetChain
separates the storage of key and value in the on-chip
memory. Each key is stored as an entry in a match ta-
ble, and each value is stored in a slot of a register array.
The match table’s output is the index (location) of the
matched key. Figure 3 shows an example of the index-
ing. Key X is stored in slot 0 of the array, and key Z
is stored in slot 2. NetChain uses the same mechanism
as NetCache [18] to support variable-length values with
multiple stages.

UDP-based key-value query. We leverage the capabil-
ity of programmable switches to define a custom packet
header format (Figure 2(b)) and build a UDP-based
query mechanism (Algorithm 1). The core header fields
for key-value operations are OP (which stands for oper-
ator), KEY and VALUE. Other fields are used for rout-
ing (§4.2) and ordered delivery (§4.3). NetChain sup-
ports four operations on the key-value store: Read and
Write the value of a given key; Insert and Delete
key-value items. Read and Write queries are entirely
handled in the data plane at line rate. Delete queries
invalidate key-value items in the data plane and re-
quires the control plane for garbage collection. Insert
queries require the control plane to set up entries in
switch tables, and thus are slower than other operations.
This is acceptable because Insert is a less frequent op-
eration for the use cases of coordination services. Most
queries are reads and writes on configuration parameters
and locks that already exist. Nevertheless, if necessary
in particular use cases, data plane insertions are feasible
using data structures like d-left hashing, but at the cost of
low utilization of the on-chip memory.

Data partitioning with consistent hashing. NetChain

S0

S1

S2

Write Request

… dstIP
= S0

… SC
= 2 S1 S2 …

Read Request
… dstIP

= S1
… SC

= 1 S2 …

… dstIP
= S2

… SC
= 0 … … dstIP

= S2
… SC

= 2 S1 S0 …

… dstIP
= H0

… SC
= 2 S1 S0 …… dstIP

= H0
… SC

= 0 …

Figure 4: NetChain routing.

uses consistent hashing [22] to partition the key-value
store over multiple switches. Keys are mapped to a hash
ring, and each switch is responsible for several continu-
ous segments on the ring. Virtual nodes [23] are used to
help evenly spread the load. Given n switches, NetChain
maps m virtual nodes to the ring and assign m/n vir-
tual nodes to each switch. Keys of each segment on the
ring are assigned to f +1 subsequent virtual nodes. In
cases where a segment is assigned to two virtual nodes
that are physically located on the same switch, NetChain
searches for the following virtual nodes along the ring
until we find f +1 virtual nodes that all belong to differ-
ent switches.

4.2 NetChain Routing
NetChain routing protocol. Our goal is to route queries
for switch processing according to the chain structure.
This is different from overlay routing that uses servers
as intermediate hops and underlay routing that specifies
hop-by-hop routing. We require that certain hops must
be visited in the chain order, but do not care how queries
are routed from one chain node to the next. While this
is similar to segment routing and loose source routing,
the write and read queries visit the chain switches in dif-
ferent orders, and read queries only visit the tail of the
chain. We build the NetChain routing protocol on top
of existing underlay routing protocols. This allows us to
partially deploy NetChain with only a few switches being
NetChain nodes, and take advantage of many properties
provided by existing routing protocols, e.g., fast rerout-
ing upon failures.

Specifically, we assign an IP address for each switch,
and store an IP list of the chain nodes in the packet header
(Figure 2(b)). SC, which is short for switch count, de-
notes the number of remaining switches in the chain. The
destination IP in the IP header indicates the next chain
node for the query. When a switch receives a packet and
the destination IP matches its own address, the switch
decodes the query and performs the read or write opera-
tion. After this, the switch updates the destination IP to
the next chain node, or to the client IP if it is the tail.

Write queries store chain IP lists as the chain order
from head to tail; read queries use the reverse order

S0 S1 S2

Head Replica Tail

time

foo=B
foo=C

W1: foo=B
W2: foo=C

foo=C
foo=B

foo=B
foo=C

foo=A foo=A foo=A

Concurrent Writes

(a) Problem of out-of-order delivery.

S0 S1 S2

Head Replica Tail

time

foo=B,seq=1
foo=C,seq=2 foo=C,seq=2

foo=B,seq=1
foo=C,seq=2

foo=A,seq=0 foo=A,seq=0 foo=A,seq=0

W1: foo=B
W2: foo=C

Concurrent Writes

(b) Serialization with sequence numbers.

Figure 5: Serializing out-of-order delivery.

(switch IPs other than the tail are used for failure han-
dling with details in §5). The chain IP lists are encoded
to UDP payloads by NetChain agents. As we use con-
sistent hashing, a NetChain agent only needs to store a
small amount of data to maintain the mapping from keys
to switch chains. The mapping only needs to be updated
when the chain is reconfigured, which does not happen
frequently. As will be described in §5, we only need
to make local changes on a few switches to quickly re-
flect chain reconfigurations in the network, followed by
a slower operation to propagate the changes to all agents.
Example. The example in Figure 4 illustrates NetChain
routing for chain [S0,S1,S2]. A write query is first sent
to S0, and contains S1 and S2 in its chain IP list. After
processing the query, S0 copies S1 to the destination IP,
and removes S1 from the list. Then the network uses
its underlay routing protocol to route the query based on
the destination IP to S1, unaware of the chain. After S1
processes the packet, it updates the destination IP to S2
and forwards the query to S2. Finally, S2 receives the
query, modifies the query to a reply packet, and returns
the reply to the client H0. A read query is simpler: it is
directly sent to S2, which copies the value from its local
store to the packet and returns the reply to the client.

4.3 In-Order Key-Value Update
Problem of out-of-order delivery. CR is originally im-
plemented on servers and uses TCP to serialize mes-
sages. However, when we move CR to switches and use
UDP, the network data plane only provides best-effort
packet delivery. Packets can arrive out of order from one
switch to another, which introduces consistency prob-
lems that do not exist in the server-based CR. Figure 5(a)
shows the problem of out-of-order delivery. We have a
key foo that is replicated on S0, S1 and S2 with initial

value A. We have two concurrent write queries, which
modify the value to B and C respectively. W1 and W2 are
reordered when they arrive at S1, and are reordered again
when they arrive at S2. foo has inconsistent values on
the three switch replicas. Clients would see foo chang-
ing from C to B if S2 fails. To make things worse, if S1
also fails, clients would see the value of the item revert-
ing to C again. This violates the consistency guarantees
provided by CR.

Serialization with sequence numbers. We use se-
quence numbers to serialize write queries, as shown in
Algorithm 1. Each item is associated with a sequence
number, which is stored in a dedicated register array that
shares the same key indexes with the value array. The
head switch assigns a monotonically increasing sequence
number to each write query, and updates its local value.
Other switches only perform write queries with higher
sequence numbers. Figure 5(b) shows how the out-of-
order delivery problem is fixed by sequence numbers. S1
drops W1 as W1 carries a lower sequence number. The
value is consistent on the three replicas.

4.4 Comparison with Original CR
NetChain replaces the servers used in the original CR
with programmable switches, which requires new so-
lutions for R1, R2 and R3 (see the preamble of §4).
These solutions are limited by switch capabilities and re-
sources. Here we describe the differences and the intu-
itions behind the correctness of the new protocol.

The solution to R1 (§4.1) implements per-key read and
write queries, as opposed to per-object read and update
queries. NetChain does not support multi-key transac-
tions. The motivation for this change is due to charac-
teristics of modern switches, which have limited compu-
tation and storage. Note that per-object operations are
more general than per-key operations, as objects can in-
clude multiple keys or even the entire database. In princi-
ple it is possible to pack multiple application values into
a single database value for atomic and consistent updates,
although there are practical limitations on value sizes, as
discussed in §6. Likewise, updates are more general than
writes, as they need not be idempotent and may require
multiple operations to implement. However, writes are
still sufficient to implement state updates and so are of-
ten provided as primitives in the APIs of modern coordi-
nation services [2, 3].

The solution to R2 (§4.2) routes queries through
switches, which does not change the CR protocol.

The solution to R3 (§4.3) delivers messages between
chain switches over UDP. The original CR assumes
ordered, reliable message delivery (implemented with
TCP), which is not available on switches. NetChain
uses sequence numbers to order messages, and relies on
client-side retries (e.g., based on a timeout) when mes-

sages are lost. Because datacenter networks are typically
well managed, the already-small packet loss rate can be
further reduced by prioritizing NetChain packets, since
coordination services are critical and do not have large
bandwidth requirements. In addition, because writes are
idempotent, retrying is benign. By considering every (re-
peated) write as a new operation, the system is able to en-
sure strong consistency. Note that client-side retries are
also used by the original CR to handle message losses
between the clients and the system, because it is difficult
to track the liveness of the clients which are peripheral to
the system.

CR and its extensions have been used by many key-
value stores to achieve strong consistency and fault-
tolerance, such as FAWN-KV [24], Flex-KV [25] and
HyperDex [26]. The design of NetChain is inspired by
these server-based solutions, especially FAWN-KV [24]
and its Ouroboros protocol [27]. The unique contribution
of NetChain is that it builds a strongly-consistent, fault-
tolerant key-value store into the network, with the switch
on-chip key-value storage, a routing protocol for chain-
based query routing and an ordering protocol for query
serialization, which can all be realized in the switch data
plane. In addition, as we will show in §5, compared
to the failure handling in the Ouroboros protocol [27],
NetChain leverages the network topology to reduce the
number of updated nodes for failover, and relies on the
controller to synchronize state in failure recovery instead
of directly through the storage nodes themselves.

4.5 Protocol Correctness
To prove that our protocol guarantees consistency in un-
reliable networks with switch failures, we show that the
following invariant always holds, which is a relaxation
of the invariant used to establish the correctness of the
original CR [15].

Invariant 1 For any key k that is assigned to a chain of
nodes [S1,S2, ...,Sn], if 1 ≤ i < j ≤ n (i.e., Si is a prede-
cessor of S j), then StateSi [k].seq≥ StateS j [k].seq.

Formally, we restrict the history to one with a sin-
gle value for each key and show that state transitions
of NetChain can be mapped to those of the original CR,
proving that NetChain provides per-key consistency. The
proof shows that when a write query between switches is
lost, it is equivalent to a state where the write query is
processed by the tail switch, but the item is overwritten
by a later write query, before the first query is exposed
by any read queries. Moreover, as explained in §5, under
various failure conditions, the protocol ensures that for
each key, the versions exposed to client read queries are
monotonically increasing. We provide a TLA+ verifica-
tion of our protocol in the extended version [28].

S0 S1 S2N

Modify destination IP
to the next chain
switch (or reply to
client if S1 is the tail)

Figure 6: Fast failover.

5 NetChain Control Plane
Overview. The NetChain controller runs as a component
in the network controller and only manages switch tables
and registers related to NetChain. As discussed in §3,
we assume the network controller is reliable. We mainly
consider system reconfigurations caused by switch fail-
ures, which are detected by the network controller using
existing techniques. We assume the failure model is fail-
stop, and the switch failures can be correctly detected by
the controller. To gracefully handle switch failures, we
divide the process into two steps: fast failover and fail-
ure recovery. (i) In fast failover, the controller quickly
reconfigures the network to resume serving queries with
the remaining f nodes in each affected chain. This de-
grades an affected chain to tolerate f−1 node failures.
(ii) In failure recovery, the controller adds other switches
as new replication nodes to the affected chains, which re-
stores these chains to f +1 nodes. Since failure recovery
needs to copy state to the new replicas, it takes longer
than fast failover.

Other types of chain reconfigurations that (temporar-
ily) remove switches from the network (e.g., switch
firmware upgrade) are handled similarly to fast failover;
those that add switches to the network (e.g., new switch
onboarding) are handled similarly to failure recovery.

5.1 Fast Failover
Fast failover quickly removes failed switches and min-
imizes the durations of service disruptions caused by
switch failures. Given a chain [S1,S2, ...,Sk], when Si
fails, the controller removes Si and the chain becomes
[S1, ...,Si−1,Si+1...,Sk]. A strawman approach is to no-
tify the agents on all servers so that when the agents send
out requests, they would put IPs of the updated chains
to the packet headers. The drawback is the huge cost of
disseminating chain updates to hundreds of thousands of
servers in a datacenter. Another solution is to update Si’s
previous hop Si−1. Specifically, after Si−1 finishes pro-
cessing the requests, it pops up one more IP address from
the chain IP list and uses Si+1 as the next hop. Given
n switches and m virtual nodes, each switch is mapped
to m/n virtual nodes. Since each virtual node is in f +1
chains, a switch failure affects m(f +1)/n chains in total.
This implies that we need to update m(f +1)/n switches

Algorithm 2 Failover(fail sw)
1: for sw ∈ fail sw.neighbors() do
2: rule.match← dst ip = f ail sw
3: if fail sw is not tail then
4: rule.action← (dst ip = chain ip[1], pop two chain IPs)
5: else
6: rule.action← (swap src ip & dst ip, pop chain IP)
7: sw.insert(rule)

for one switch failure in fast failover. While m(f +1)/n
is fewer than the number of servers, it still incurs consid-
erable reconfiguration cost as m/n can be a few tens or
hundreds. Furthermore, if Si is the head (tail) of a chain,
the previous hop for write (read) queries would be all
the servers, which need to be updated. In order to mini-
mize service disruptions, we want to reduce the number
of nodes that must be updated during failover.

Reducing number of updated nodes. Our key idea
is that the controller only needs to update the neighbor
switches of a failed switch to remove it from all its chains
(Algorithm 2). Specifically, the controller inserts a new
rule to each neighbor switch which examines the desti-
nation IP. If the destination IP is that of the failed switch
(line 2), the neighbor switches copy the IP of the next
chain hop of the failed switch (i.e., Si+1’s IP) to the des-
tination IP (line 3-4), or reply to the client if the failed
switch is the tail (line 5-6). The condition of whether the
failed switch is the tail (line 3) is implemented by check-
ing the size of the chain IP list. Write and read queries
are handled in the same way as they store the original
and reverse orders of the chain IP list respectively. Fig-
ure 6 illustrates this idea. All requests from S0 to S1 have
to go through S1’s neighbor switches, which are repre-
sented by the dashed circle. N is one of the neighbor
switches. After S1 fails, the controller updates N to use
S2’s IP as the new destination IP. Note that if N overlaps
with S0 (S2), it updates the destination IP after (before) it
processes the query. If S1 is the end of a chain, N would
send the packet back to the client.

With this idea, even if a failed switch is the head or tail
of a chain, the controller only needs to update its neigh-
bor switches, instead of updating all the clients. Multiple
switch failures are handled in a similar manner, i.e., up-
dating the neighbor switches of the failed switches, and
NetChain can only handle up to f node failures for a
chain of f +1 nodes.

5.2 Failure Recovery
Failure recovery restores all chains to f +1 switches.
Suppose a failed switch Si is mapped to virtual nodes
V1,V2, ...,Vk. These virtual nodes are removed from their
chains in fast failover. To restore them, we first randomly
assign them to k live switches. This helps spread the load
of failure recovery to multiple switches rather than a sin-

S0 S1 S2N

S3Modify destination IP to
the new next hop S3

Figure 7: Failure recovery.

gle switch. Let Vx be reassigned to switch Sy. Since Vx
belongs to f +1 chains, we need to add Sy to each of them.
We use Figure 7 to illustrate how we add a switch to a
chain. Fast failover updates S1’s neighbor switches to
forward all requests to S2 (the blue line from N to S2).
Failure recovery adds S3 to the chain to restore the chain
to three nodes (the orange lines from N to S3 and from S3
to S2). The process involves two steps, described below.
Note that in essence the process is similar to live virtual
machine migrations [29] and reconfigurations for server-
based chain replication [24]. The difference is that we
have the network controller to copy state and to mod-
ify switch rules to perform the reconfigurations. Algo-
rithm 3 gives the pseudo code. In the example, f ail sw,
new sw and re f sw are S1, S3 and S2, respectively.

Step 1: Pre-synchronization. The controller copies
state from S2 to S3 (line 2). This includes (i) copying val-
ues from S2’s register array to S3’s register array, and (ii)
inserting rules to S3’s index table (Figure 3). While this
step is time-consuming, the availability is not affected
as the chain continues its operation with S0 and S2. We
cover the case where there is no S2 in the paragraph be-
low on handling special cases.

Step 2: Two-phase atomic switching. The controller
switches the chain from [S0,S2] to [S0,S3,S2]. This step
has to be done carefully to ensure consistency. We keep
the following invariant: any node in the chain has newer
values than its next hop. The switching has two phases.
• Phase 1: Stop and synchronization. The controller

inserts rules to all neighbors of S1 (N in Figure 7) to
stop forwarding queries to S2 (line 3-4). At the same
time, it continues synchronizing the state between S2
and S3 (line 5). Since no new queries are forwarded
to S2, the state on S2 and S3 would eventually become
the same. In this phase, the chain stops serving write
queries, but still serves read queries with S2.

• Phase 2: Activation. The controller activates the new
chain switch S3 to start processing queries (line 6), and
activates all neighbor switches of S1 (N in the figure)
to forward queries to S3 (line 7-8). These rules modify
the destination IP to S3’s IP. They override the rules
of fast failover (by using higher rule priorities), so that
instead of being forwarded to S2, all queries would be
forwarded to S3. The chain is restored after this phase.

Algorithm 3 FailureRecovery(fail sw, new sw)
1: re f sw← getLiveRe f erenceSwitch(fail sw)
2: preSyncState(new sw,re f sw)
3: for sw ∈ fail sw.neighbors() do
4: sw.stopForward(fail sw)
5: syncState(new sw,re f sw)
6: new sw.activateProcess()
7: for sw ∈ fail sw.neighbors() do
8: sw.activateForward(fail sw,new sw)

Note that Step 1 is actually an optimization to shorten
the temporary downtime caused by Phase 1 in Step 2,
as most data is synchronized between the switches af-
ter Step 1. The invariant is kept throughout Phase 1 and
Phase 2: in Phase 1, S3 is synchronized to the same
state as S2 before it is added to the chain; in Phase 2,
the neighbor switches of S1 gradually restart to forward
write queries again, which always go to S3 first. The read
queries in this process are continuously handled by S2
and do not have temporary disruptions as write queries.
The failure recovery process is performed for each failed
switch under multiple failures.

Handling special cases. The above example shows the
normal case when S1 is in the middle of a chain. Now
we discuss the special cases when S1 is the head or tail
of a chain. (i) When S1 is the head, the process is the
same as S1 is in the middle. In addition, since the head
switch assigns sequence numbers, the new head must as-
sign sequence numbers bigger than those assigned by the
failed head. To do this, we adopt a mechanism similar to
NOPaxos [20], which uses an additional session number
for message ordering. The session number is increased
for every new head of a chain, and the messages are or-
dered by the lexicographical order of the (session num-
ber, sequence number) tuple. (ii) When S1 is the tail, in
Step 1, we copy state from its previous hop to it as we do
not have S2 (line 1 would assign S0 to re f sw). In Phase
1 of Step 2, both read and write queries are dropped by
S1’s neighbors to ensure consistency. Although S0 is still
processing write queries during synchronization, we only
need to copy the state from S0 that are updated before we
finish dropping all queries on S1’s neighbor switches, as
no new read queries are served. Then in Phase 2, we
activate the chain by forwarding the queries to S3.

Minimizing disruptions with virtual groups. While
we guarantee the consistency for failure recovery with
two-phase atomic switching, write queries need to be
stopped to recover head and middle nodes, and both
read and write queries need to be stopped to recover tail
nodes. We use virtual groups to minimize the service dis-
ruptions. Specifically, we only recover one virtual group
each time. Let a switch be mapped to 100 virtual groups.
Each group is available by 99% of the recovery time and
only queries to one group are affected at each time.

6 Discussion
Switch on-chip storage size. Coordination services are
not intended to provide generic storage services. We ar-
gue that the switch on-chip memory is sufficient from
two aspects. (i) How much can the network provide?
Commodity switches today have tens of megabytes of
on-chip SRAM. Because datacenter networks do not use
many protocols as WANs and use shallow buffers for
low latency, a large portion of the on-chip SRAM can
be allocated to NetChain. Assuming 10MB is allocated
in each switch, a datacenter with 100 switches can pro-
vide 1GB total storage, or 333MB effective storage with
a replication factor of three. The number can be further
increased with better semiconductor technology and allo-
cating more on-chip SRAM to NetChain. (ii) How much
does NetChain need? As shown in [1], a Chubby in-
stance at Google that serves tens of thousands of clients
store 22k files in total, among which ∼90% are 0-1
KB and only ∼0.2% are bigger than 10KB. This means
42MB is enough to store ∼99.8% of the files. Fur-
thermore, consider the use case for locks. Assuming
each lock requires 30B, then 333MB storage can pro-
vide 10 million concurrent locks. For in-memory dis-
tributed transactions that take 100µs, NetChain would
be able to provide 100 billion locks per second, which
is enough for the most demanding systems today. Even
with a small deployment using three switches (providing
10MB storage), NetChain would be able to provide 0.3
million concurrent locks or 3 billion locks per second.

Value size. The value size is limited by the packet size
(9KB for Ethernet jumbo frames). Conceivably, a big
value can be stored with multiple keys, but strong con-
sistency is not provided for a multi-key query spanning
several packets. The value size is also limited by the
switch chip. Typically, a switch pipeline contains multi-
ple stages (k) and each stage can read or write a few bytes
(n). Assuming k=12 and n=16, switches can handle val-
ues up to kn=192 bytes at line rate. Values bigger than
kn can be supported using packet mirroring/recirculation
which sends packets to go through the pipeline for an-
other round of processing, but at the cost of lower effec-
tive throughput [18]. We suggest that NetChain is best
suitable for small values that need frequent access, such
as configuration parameters, barriers and locks.

Data placement. NetChain uses consistent hashing and
virtual nodes to partition the key-value store between
multiple switches. The data placement strategy can be
optimized for throughput and latency by taking into ac-
count the network topology and the query characteristics.

Full interface. The current NetChain prototype pro-
vides a basic key-value interface for fixed-length keys
and limited-size variable-length values. Many commer-
cial and open-source systems like ZooKeeper provide

H0

S0 S2

S1

S3

H1

H2

H3

Figure 8: NetChain testbed with four 6.5Tbps Barefoot
Tofino switches (S0-S3) and four servers (H0-H3).

additional features, e.g., hierarchical name space (as a
file system), watches (which notify clients when watched
values are updated), access control list (ACL) and data
encryption. We leave these features as future work.

Accelerator for server-based solutions. NetChain can
be used as an accelerator to server-based solutions such
as Chubby [1], ZooKeeper [2] and etcd [3]). The key
space is partitioned to store data in the network and the
servers separately. NetChain can be used to store hot
data with small value size, and servers store big and less
popular data. Such a hybrid approach provides the ad-
vantages of both solutions.

7 Implementation
We have implemented a prototype of NetChain, includ-
ing a switch data plane, a controller and a client agent. (i)
The switch data plane is written in P4 [30] and is com-
piled to Barefoot Tofino ASIC [13] with Barefoot Capi-
lano software suite [31]. We use 16-byte keys and use 8
stages to store values. We allocate 64K 16-byte slots in
each stage. This in total provides 8 MB storage. We use
standard L3 routing that forwards packets based on des-
tination IP. In total, the NetChain data plane implementa-
tion uses much less than 50% of the on-chip memory in
the Tofino ASIC. (ii) The controller is written in Python.
It runs as a process on a server and communicates with
each switch agent through the standard Python RPC li-
brary xmlrpclib. Each switch agent is a Python process
running in the switch OS. It uses a Thrift API generated
by the P4 compiler to manage the switch resources and
update the key-value items in the data plane (e.g., for fail-
ure handling) through the switch driver. (iii) The client
agent is implemented in C with Intel DPDK [32] for opti-
mized IO performance. It provides a key-value interface
for applications, and achieves up to 20.5 MQPS with the
40G NICs on our servers.

8 Evaluation
In this section, we provide evaluation results to demon-
strate NetChain provides orders of magnitude improve-
ments on throughput (§8.1) and latency (§8.2), is scal-
able (§8.3), handles failures gracefully (§8.4), and sig-
nificantly benefits applications (§8.5).

Testbed. Our evaluation is conducted on a testbed con-
sisting of four 6.5 Tbps Barefoot Tofino switches and

2000

20
40
60
80

0 32 64 96 128
Value Size (Byte)

0
0.15Th

ro
ug

hp
ut

 (M
Q

P
S

)
NetChain(max)
NetChain(4)

NetChain(3)
NetChain(2)

NetChain(1)
ZooKeeper

(a) Throughput vs. value size.

2000

20
40
60
80

0 20K 40K 60K 80K 100K
Store Size

0
0.15Th

ro
ug

hp
ut

 (M
Q

P
S

)

NetChain(max)
NetChain(4)

NetChain(3)
NetChain(2)

NetChain(1)
ZooKeeper

(b) Throughput vs. store size.

2000

20
40
60
80

0 20 40 60 80 100
Write Ratio (%)

0
0.15Th

ro
ug

hp
ut

 (M
Q

P
S

)

NetChain(max)
NetChain(4)

NetChain(3)
NetChain(2)

NetChain(1)
ZooKeeper

(c) Throughput vs. write ratio.

40

80

120

10-3 10-2 10-1 100 101

Packet Loss Rate (%)

0

0.15

Th
ro

ug
hp

ut
 (M

Q
P

S
)

NetChain(4) ZooKeeper

(d) Throughput vs. loss rate.

10-3 10-2 10-1 100 101 102 103 104

Throughput (MQPS)

100

101

102

103

104

La
te

nc
y

(¹
s)

ZooKeeper (write)
ZooKeeper (read)
NetChain (read/write)

(e) Latency vs. throughput.

0 20 40 60 80 100
Number of Switches

0

20

40

60

80

Th
ro

ug
hp

ut
 (B

Q
P

S
) NetChain (read)

NetChain (write)

(f) Scalability (simulation).

Figure 9: Performance results. (a-e) shows the experimental results of a three-switch NetChain prototype. Netchain(1),
Netchain(2), Netchain(3) and Netchain(4) correspond to measuring the prototype performance with one, two, three
and four servers respectively. NetChain(max) is the theoretical maximum throughput achievable by a three-switch
chain; it is not a measured throughput. (f) shows the simulation results of spine-leaf networks of various sizes.

four server machines. Each server machine is equipped
with a 16-core CPU (Intel Xeon E5-2630) and 128 GB
total memory (four Samsung 32GB DDR4-2133 mem-
ory). Three server machines are equipped with 40G NICs
(Intel XL710) and the other one is equipped with a 25G
NIC (Intel XXV710). The testbed is organized in a topol-
ogy as shown in Figure 8.

Comparison. We compare NetChain to Apache
ZooKeeper-3.5.2 [33]. We implement a client to mea-
sure ZooKeeper’s performance with Apache Curator-
4.0.0 [34], which is a popular client library for
ZooKeeper. The comparison is slightly unfair: NetChain
does not provide all features of ZooKeeper (§6), and
ZooKeeper is a production-quality system that compro-
mises its performance for many software-engineering
objectives. But at a high level, the comparison uses
ZooKeeper as a reference for server-based solutions to
demonstrate the performance advantages of NetChain.

8.1 Throughput
We first evaluate the throughput of NetChain. We use
three switches to form a chain [S0,S1,S2], where S0 is
the head and S2 is the tail. Each server can send and re-
ceive queries at up to 20.5 MQPS. We use NetChain(1),
NetChain(2), NetChain(3), NetChain(4) to denote the
measured throughput by using one, two, three and four
servers, respectively. We use Tofino switches in a mode
that guarantees up to 4 BQPS throughput and each query

packet is processed twice by a switch (e.g., a query from
H0 follows path H0-S0-S1-S2-S1-S0-H0). Therefore, the
maximum throughput of the chain is 2 BQPS in this
setup. As the four servers cannot saturate the chain, we
use NetChain(max) to denote the maximum throughput
of the chain (shown as dotted lines in figures). For com-
parison, we run ZooKeeper on three servers, and a sepa-
rate 100 client processes on the other server to generate
queries. This experiment aims to thoroughly evaluate the
throughput of one switch chain under various setups with
real hardware switches. For large-scale deployments, a
packet may traverse multiple hops to get from one chain
switch to the next, and we evaluate the throughput with
simulations in §8.3. Figure 9(a-d) shows the through-
puts of the two systems. The default setting uses 64-
byte value size, 20K store size (i.e., the number of key-
value items), 1% write ratio, and 0% link loss rate. We
change one parameter in each experiment to show how
the throughputs are affected by these parameters.

Figure 9(a) shows the impact of value size. NetChain
provides orders of magnitude higher throughput than
ZooKeeper and both systems are not affected by the
value size in the evaluated range. NetChain(4) keeps
at 82 MQPS, meaning that NetChain can fully serve all
the queries generated by the four servers. This is due
to the nature of a switch ASIC: as long as the P4 pro-
gram is compiled to fit the switch resource requirements,
the switch is able to run NetChain at line rate. In fact,

a three-switch chain is able to provide up to 2 BQPS,
as denoted by NetChain(max). Our current prototype
support value size up to 128 bytes. Larger values can
be supported using more stages and using packet mirror-
ing/recirculation as discussed in §6.

Figure 9(b) shows the impact of store size. Similarly,
both systems are not affected by the store size in the eval-
uated range, and NetChain provides orders of magnitude
higher throughput. The store size is restricted by the al-
located total size (8MB in our prototype) and the value
size. The store size is large enough to be useful for coor-
dination services as discussed in §6.

Figure 9(c) shows the impact of write ratio. With read-
only workloads, ZooKeeper achieves 230 KQPS. But
even with a write ratio of 1%, its throughput drops to 140
KQPS. And when the write ratio is 100%, its throughput
drops to 27 KQPS. As for comparison, NetChain(4) con-
sistently achieves 82 MQPS. This is because NetChain
uses chain replication and each switch is able to process
both read and write queries at line rate. As the switches
in the evaluated chain [S0,S1,S2] process the same num-
ber of packets for both read and write queries, the total
throughput is not affected by the write ratio, which would
be different in more complex topologies. As we will
show in §8.3, NetChain has lower throughput for write
queries for large deployments, as write queries require
more hops than read queries.

Figure 9(d) shows the impact of packet loss rate. We
inject random packet loss rate to each switch, ranging
from 0.001% to 10%. The throughput of ZooKeeper
drops to 50 KQPS (3 KQPS) when the loss rate is 1%
(10%). As for comparison, NetChain(4) keeps around 82
MQPS for packet loss rate between 0.001% and 1%, and
only drops to 48 MPQS when the loss rate is 10%. The
reason is because ZooKeeper uses TCP for reliable trans-
mission which has a lot of overhead under high loss rate,
whereas NetChain simply uses UDP and lets the clients
retry a query upon packet loss. Although high packet
loss rate is unlikely to happen frequently in datacenters,
this experiment demonstrates that NetChain can provide
high throughput even under extreme scenarios.

8.2 Latency
We now evaluate the latency of NetChain. We sepa-
rate the read and write queries, and measure their laten-
cies under different throughputs. For NetChain, since
the switch-side processing delay is sub-microsecond, the
client-side delay dominates the query latency. In addi-
tion, as both read and write queries traverse the same
number of switches in the evaluated chain, NetChain has
the same latency for both reads and writes, as shown in
Figure 9(e). Because we implement NetChain clients
with DPDK to bypass the TCP/IP stack and the OS ker-
nel, NetChain incurs only 9.7 µs query latency. The la-

0 50 100 150 200 Time (s)
0
5

10
15
20
25

Th
ro

ug
hp

ut
(M

Q
P

S
)

failover failure recovery

(a) 1 Virtual Group.

0 50 100 150 200 Time (s)
0
5

10
15
20
25

Th
ro

ug
hp

ut
(M

Q
P

S
)

failover failure recovery

(b) 100 Virtual Groups.

Figure 10: Failure handling results. It shows the through-
put time series of one client server when one switch fails
in a four-switch testbed. NetChain has fast failover. By
using more virtual groups, NetChain provides smaller
throughput drops for failure recovery.

tency keeps at 9.7 µs even when all four severs are gen-
erating queries to the system at 82 MQPS (the solid line
of NetChain in the figure), and is expected to be not af-
fected by throughput until the system is saturated at 2
BQPS (the dotted line of NetChain in the figure).

As for comparison, ZooKeeper has a latency of 170
µs for read queries and 2350 µs for write queries at low
throughput. The latencies slightly go up before the sys-
tem is saturated (27 KQPS for writes and 230 KQPS for
reads), because servers do not have deterministic per-
query processing time as switch ASICs and the latency
is affected by the system load. Overall, NetChain pro-
vides orders of magnitude lower latency than ZooKeeper
at orders of magnitude higher throughput.

8.3 Scalability
We use simulations to evaluate the performance of
NetChain in large-scale deployments. We use standard
spine-leaf topologies. We assume each switch has 64
ports and has a throughput of 4 BQPS. Each leaf switch
is connected to 32 servers in its rack, and uses the other
32 ports to connect to spine switches. We assume the net-
work is non-blocking, i.e., the number of spine switches
is a half of that of leaf switches. We vary the network
from 6 switches (2 spines and 4 leafs) to 96 switches
(32 spines and 64 leafs). Figure 9(f) shows the max-
imum throughputs for read-only and write-only work-
loads. Both throughputs grow linearly, because in the
two-layer network, the average number of hops for a
query does not change under different network sizes.
The write throughput is lower than the read through-
put because a write query traverses more hops than a
read query. When the queries have mixed read and
write operations, the throughput curve will be between
NetChain(read) and NetChain(write).

8.4 Handling Failures
The four-switch testbed allows us to evaluate NetChain
under different failure conditions. For example, to eval-
uate the failure of a middle (tail) node, we can use an
initial chain [S0,S1,S2], fail S1 (S2), and let S3 replace
S1 (S2). Since failing S0 would disconnect the servers
from the network, to evaluate a head failure and show the
system throughput changes during the transition, we can
use an initial chain [S1,S2,S0], fail S1, and let S3 replace
S1. Due to the limited space, we show one such experi-
ment where we fail S1 in the chain [S0,S1,S2] and use S3
to replace S1 for failure recovery. We use a write ratio
of 50%, and let the write queries use path S0-S1-S2 and
the read queries use path S0-S3-S2. In this way, we can
demonstrate that when the middle node fails, the system
is still able to serve read queries. We show the through-
put time series of one client with different numbers of
virtual groups.

Figure 10(a) shows the throughput time series with
only one virtual group. Initially, the client has a through-
put of 20.5 MQPS. Then at 20s, we inject the failure
of S1 by letting S0 drop all packets to S1. NetChain
quickly fails over to a two-switch chain [S0,S2], and the
client throughput is fully restored. Note that to make
the throughput drop visible, we manually inject a one-
second delay to the controller before it starts the failover
routine. In practice, the duration of failover depends on
how fast the control plane can detect the failure, which
is beyond the scope of this paper. We also add 20 sec-
onds to separate the failure recovery process from the
failover process. The failure recovery starts around 40s
and lasts about 150s. The throughput drops to half be-
cause NetChain needs to synchronize the key-value store
between S2 and S3, during which write queries cannot
be served. Note that if it was a tail failure, the through-
put would drop to 0, because both read and write queries
cannot be served during the recovery of the tail (§5).

Figure 10(b) shows the time series of NetChain
throughput with 100 virtual groups. The failover part
is similar, but the failure recovery part only experi-
ences a 0.5% throughput drop. This is because by using
100 virtual groups, NetChain only needs to stop serv-
ing write queries for one virtual group each time, or 1%
of queries. Since we use a write ratio of 50%, only
1%× 50% = 0.5% of queries are affect during failure
recovery. Therefore, using more virtual groups provides
both slight throughput drops and better availability.

8.5 Application Performance
Finally, we use distributed transactions as an applica-
tion to further demonstrate the benefits of NetChain. We
use a benchmark workload from previous work [35, 36],
which is a generalization of the new-order transaction in
TPC-C benchmark [37], because the workload allows us

10-3 10-2 10-1 100

Contention Index

100

101

102

103

104

105

106

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

NetChain (100 clients)

NetChain (10 clients)

NetChain (1 client)

ZooKeeper (100 clients)

ZooKeeper (10 clients)

ZooKeeper (1 client)

Figure 11: Application results. NetChain provides orders
of magnitude higher transaction throughput.

to test transactions with different contention levels. In
this workload, for each transaction, a client needs to ac-
quire ten locks, where one lock is chosen from a small
set of hot items and the other nine locks are from a very
large set of items. The workload uses contention index,
which is the inverse of the number of hot items, to con-
trol the contentions. For example, a contention index of
0.001 (or 1) means all clients compete for one item in
1000 (or 1) items. We use the classic two-phase locking
(2PL) protocol: each client first acquire all the locks from
NetChain or ZooKeeper, and then releases all the locks
to complete one transaction. For NetChain, we use the
compare-and-swap (CAS) primitive in Tofino switches
to implement exclusive locks. Specifically, in addition to
checking sequence numbers, a lock can only be released
by the client that owns the lock by comparing the client
ID in the value field. For ZooKeeper, exclusive locks can
be implemented by ephemeral znodes and are directly
provided by Apache Curator client library.

Figure 11 shows the transaction throughputs. By us-
ing NetChain as a locking server, the system can achieve
orders of magnitude higher transaction throughput than
ZooKeeper. We observe that the line with one client
is flat because there are no contentions with one client.
With 100 clients, the system has higher throughput at
small contention index, because more clients can do
more transactions. But the throughput decreases when
the contention index increases, and is even slightly lower
than that with one client, due to more contentions. We
expect a lightning fast coordination system like NetChain
can open the door for designing a new generation of dis-
tributed systems beyond distributed transactions.

9 Related Work
Consensus protocols. Various protocols have been pro-
posed to solve the distributed consensus problem, such
as Paxos [4], ZAB [38], Raft [39], Viewstamped Repli-
cation [40], Virtual Synchrony [41], etc. By leveraging
that in some scenarios messages arrive in order, some

protocols are designed to reduce the overhead, such as
Fast Paxos [42] and Optimistic Atomic Broadcast [43].
Recent work goes one step further by ordering mes-
sages with the network, including SpecPaxos [44] and
NOPaxos [20]. NetChain directly processes coordination
queries in the network, providing higher performance.
Coordination services. As distributed coordination is
widely used, some systems are built to provide coordi-
nation as a service, e.g., Chubby [1], ZooKeeper [2] and
etcd [3]. These services have highly-optimized imple-
mentations of consensus protocols in their core and pro-
vide simple APIs. NetChain provides a similar key-value
API and implements the system in the network.
Hardware accelerations. NetPaxos [16, 17] imple-
ments Paxos on switches. It still requires to build a repli-
cated key-value store on servers, which may use Net-
Paxos for consensus to improve performance. As such,
the key-value store is still bounded by server IO, and thus
is much slower than NetChain. Besides, NetChain uses
Vertical Paxos for consensus which is more suitable for
in-network key-value stores, provides protocols and al-
gorithms for routing and failure handling, and has an
implementation with multiple switches and an evalua-
tion. Compared to NetCache [18], NetChain uses Net-
Cache’s on-chip key-value store design, and designs a
replicated, in-network key-value store that handles both
read and write queries and provides strong consistency
and fault-tolerance. Some other work has also used hard-
ware to speed up distributed systems. SwitchKV [45]
uses switches to enable content-based routing for load
balancing of key-value stores; the switches do not cache
key-value items or serve queries. Marple [46] designs
a new hardware primitive to support key-value stores
for network measurements. Schiff et al. [47] designs a
synchronization framework to resolve conflicts for dis-
tributed network controllers, which has to go through the
switch control plane. Li et al. [48] proposes a new hard-
ware design to achieve a throughput of 1 BQPS with a
single server platform. IncBricks [49] caches key-value
items with NPUs. Consensus in a box [50] uses FP-
GAs to speed up ZooKeeper’s atomic broadcast protocol.
NetChain does not require specialized chips, and switch
ASICs have higher performance than NPUs and FPGAs.

10 Conclusion
We present NetChain, an in-network coordination ser-
vice that provides billions of coordination operations per
second with sub-RTT latencies. NetChain leverages pro-
grammable switches to build a strongly-consistent, fault-
tolerant, in-network key-value store. This powerful capa-
bility dramatically reduces the coordination latency to as
little as half of an RTT. We believe NetChain exemplifies
a new generation of ultra-low latency systems enabled by
programmable networks.

Acknowledgments We thank our shepherd Amar
Phanishayee and the anonymous reviewers for their valu-
able feedback. Robert Soulé is supported in part by
SNF 167173. Nate Foster is supported in part by
NSF CNS-1413972. Ion Stoica is supported in part by
DHS Award HSHQDC-16-3-00083, NSF CISE Expedi-
tions Award CCF-1139158, and gifts from Ant Finan-
cial, Amazon Web Services, CapitalOne, Ericsson, GE,
Google, Huawei, Intel, IBM, Microsoft and VMware.

References
[1] M. Burrows, “The Chubby lock service for loosely-

coupled distributed systems,” in USENIX OSDI,
November 2006.

[2] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed,
“ZooKeeper: Wait-free coordination for Internet-
scale systems,” in USENIX ATC, June 2010.

[3] “etcd key-value store.” https://github.
com/coreos/etcd.

[4] L. Lamport, “The part-time parliament,” ACM
Transactions on Computer Systems, May 1998.

[5] A. Dragojević, D. Narayanan, E. B. Nightin-
gale, M. Renzelmann, A. Shamis, A. Badam, and
M. Castro, “No compromises: Distributed trans-
actions with consistency, availability, and perfor-
mance,” in ACM SOSP, October 2015.

[6] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen,
“Fast in-memory transaction processing using
RDMA and HTM,” in ACM SOSP, October 2015.

[7] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi,
J. M. Hellerstein, and I. Stoica, “Highly available
transactions: Virtues and limitations,” in VLDB,
September 2014.

[8] “MongoDB.” https://www.mongodb.com/.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: Amazon’s
highly available key-value store,” in ACM SOSP,
October 2007.

[10] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.
Hellerstein, and I. Stoica, “Coordination avoidance
in database systems,” in VLDB, August 2015.

[11] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat,
C. Koch, N. Foster, and J. Gehrke, “The home-
ostasis protocol: Avoiding transaction coordination
through program analysis,” in ACM SIGMOD, May
2015.

[12] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy,
and S. Shenker, “NetBricks: Taking the V out of
NFV,” in USENIX OSDI, November 2016.

[13] “Barefoot Tofino.” https://www.
barefootnetworks.com/technology/
#tofino.

[14] “Broadcom Tomahawk II.” https://www.
broadcom.com/.

[15] R. Van Renesse and F. B. Schneider, “Chain repli-
cation for supporting high throughput and availabil-
ity,” in USENIX OSDI, December 2004.

[16] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and
R. Soulé, “NetPaxos: Consensus at network speed,”
in ACM SOSR, June 2015.

[17] H. T. Dang, M. Canini, F. Pedone, and R. Soulé,
“Paxos made switch-y,” SIGCOMM CCR, April
2016.

[18] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,
C. Kim, and I. Stoica, “NetCache: Balancing key-
value stores with fast in-network caching,” in ACM
SOSP, October 2017.

[19] “Cavium XPliant.” https://www.cavium.
com/.

[20] J. Li, E. Michael, N. K. Sharma, A. Szekeres,
and D. R. Ports, “Just say NO to Paxos overhead:
Replacing consensus with network ordering,” in
USENIX OSDI, November 2016.

[21] L. Lamport, D. Malkhi, and L. Zhou, “Vertical
paxos and primary-backup replication,” in ACM
PODC, August 2009.

[22] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin, “Consistent hashing and
random trees: Distributed caching protocols for re-
lieving hot spots on the world wide web,” in ACM
Symposium on Theory of Computing, May 1997.

[23] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris,
and I. Stoica, “Wide-area cooperative storage with
CFS,” in ACM SOSP, October 2001.

[24] D. G. Andersen, J. Franklin, M. Kaminsky,
A. Phanishayee, L. Tan, and V. Vasudevan,
“FAWN: A fast array of wimpy nodes,” in ACM
SOSP, October 2009.

[25] A. Phanishayee, D. G. Andersen, H. Pucha,
A. Povzner, and W. Belluomini, “Flex-KV: En-
abling high-performance and flexible KV systems,”
in Workshop on Management of Big Data Systems
(MBDS), September 2012.

[26] R. Escriva, B. Wong, and E. G. Sirer, “HyperDex:
A distributed, searchable key-value store,” in ACM
SIGCOMM, August 2012.

[27] A. Phanishayee, Chaining for Flexible and High-
Performance Key-Value Systems. PhD thesis,
Carnegie Mellon University, September 2012.

[28] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,
C. Kim, and I. Stoica, “NetChain: Scale-free sub-
RTT coordination (extended version),” in arXiv,
February 2018.

[29] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live migra-
tion of virtual machines,” in USENIX NSDI, May
2005.

[30] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McK-
eown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming protocol-independent packet proces-
sors,” SIGCOMM CCR, July 2014.

[31] “Barefoot Capilano.” https://www.
barefootnetworks.com/technology/
#capilano.

[32] Intel, “Intel data plane development kit (dpdk),”
2017. http://dpdk.org/.

[33] apache, “Apache zookeeper,” 2017. http://
zookeeper.apache.org/.

[34] curator, “Apache curator,” 2017. http://
curator.apache.org/.

[35] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi, “Calvin: Fast distributed
transactions for partitioned database systems,” in
ACM SIGMOD, May 2012.

[36] K. Ren, A. Thomson, and D. J. Abadi,
“Lightweight locking for main memory database
systems,” VLDB, December 2012.

[37] “TPC-C.” http://www.tpc.org/tpcc/.

[38] B. Reed and F. P. Junqueira, “A simple totally
ordered broadcast protocol,” in ACM Large-Scale
Distributed Systems and Middleware, September
2008.

[39] D. Ongaro and J. Ousterhout, “In search of an
understandable consensus algorithm,” in USENIX
ATC, June 2014.

[40] B. M. Oki and B. H. Liskov, “Viewstamped repli-
cation: A new primary copy method to sup-
port highly-available distributed systems,” in ACM
PODC, August 1988.

[41] K. Birman and T. Joseph, “Exploiting Virtual Syn-
chrony in Distributed Systems,” SIGOPS Operat-
ing Systems Review, November 1987.

[42] L. Lamport, “Fast Paxos,” Distributed Computing,
October 2006.

[43] F. Pedone and A. Schiper, “Optimistic atomic
broadcast,” in International Symposium on Dis-
tributed Computing, September 1998.

[44] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and
A. Krishnamurthy, “Designing distributed systems
using approximate synchrony in data center net-
works,” in USENIX NSDI, May 2015.

[45] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and
M. J. Freedman, “Be fast, cheap and in control with
SwitchKV,” in USENIX NSDI, March 2016.

[46] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal,
V. Arun, M. Alizadeh, V. Jeyakumar, and C. Kim,

“Language-directed hardware design for network
performance monitoring,” in ACM SIGCOMM, Au-
gust 2017.

[47] L. Schiff, S. Schmid, and P. Kuznetsov, “In-
band synchronization for distributed SDN control
planes,” SIGCOMM CCR, January 2016.

[48] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia,
M. Kaminsky, D. G. Andersen, O. Seongil, S. Lee,
and P. Dubey, “Architecting to achieve a billion re-
quests per second throughput on a single key-value
store server platform,” in ACM/IEEE ISCA, June
2015.

[49] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishna-
murthy, and K. Atreya, “IncBricks: Toward in-
network computation with an in-network cache,” in
ACM ASPLOS, April 2017.

[50] Z. István, D. Sidler, G. Alonso, and M. Vukolic,
“Consensus in a box: Inexpensive coordination in
hardware,” in USENIX NSDI, March 2016.

