
High Performance Packet Processing with FlexNIC

Antoine Kaufmann1 Simon Peter2 Naveen Kr. Sharma1

Thomas Anderson1 Arvind Krishnamurthy1

1University of Washington 2The University of Texas at Austin
{antoinek,naveenks,tom,arvind}@cs.washington.edu simon@cs.utexas.edu

Abstract
The recent surge of network I/O performance has put enor-
mous pressure on memory and software I/O processing sub-
systems. We argue that the primary reason for high mem-
ory and processing overheads is the inefficient use of these
resources by current commodity network interface cards
(NICs).

We propose FlexNIC, a flexible network DMA interface
that can be used by operating systems and applications alike
to reduce packet processing overheads. FlexNIC allows ser-
vices to install packet processing rules into the NIC, which
then executes simple operations on packets while exchang-
ing them with host memory. Thus, our proposal moves some
of the packet processing traditionally done in software to the
NIC, where it can be done flexibly and at high speed.

We quantify the potential benefits of FlexNIC by emulat-
ing the proposed FlexNIC functionality with existing hard-
ware or in software. We show that significant gains in appli-
cation performance are possible, in terms of both latency and
throughput, for several widely used applications, including a
key-value store, a stream processing system, and an intrusion
detection system.

Categories and Subject Descriptors C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign

Keywords Network Interface Card; DMA; Flexible Net-
work Processing; Match-and-Action Processing

1. Introduction
Data center network bandwidth is growing steadily: 10 Gbps
Ethernet is widespread, 25 and 40 Gbps are gaining trac-
tion, while 100 Gbps is nearly available [47]. This trend is
straining the server computation and memory capabilities;

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the Owner/Author.
Copyright is held by the owner/author(s).

ASPLOS ’16 April 2–6, 2016, Atlanta, Georgia, USA.
ACM 978-1-4503-4091-5/16/04.
DOI: http://dx.doi.org/10.1145/2872362.2872367

I/O processing is likely to limit future server performance.
For example, last-level cache access latency in Intel Sandy
Bridge processors is 15 ns [34] and has not improved in
newer processors. A 40 Gbps interface can receive a cache-
line sized (64B) packet close to every 12 ns. At that speed,
OS kernel bypass [5; 39] is a necessity but not enough by it-
self. Even a single last-level cache access in the packet data
handling path can prevent software from keeping up with ar-
riving network traffic.

We claim that the primary reason for high memory and
processing overheads is the inefficient use of these resources
by current commodity network interface cards (NICs). NICs
communicate with software by accessing data in server
memory, either in DRAM or via a designated last-level cache
(e.g., via DDIO [21], DCA [20], or TPH [38]). Packet de-
scriptor queues instruct the NIC as to where in server mem-
ory it should place the next packet and from where to read
the next arriving packet for transmission. Except for sim-
ple header splitting, no further modifications to packets are
made and only basic distinctions are made among packet
types. For example, it is possible to choose a virtual queue
based on the TCP connection, but not, say, on the application
key in a memcache lookup.

This design introduces overhead in several ways. For
example, even if software is only interested in a portion of
each packet, the current interface requires NICs to transfer
packets in their entirety to host memory. No interface exists
to steer packets to the right location in the memory hierarchy
based on application-level information, causing extraneous
cache traffic when a packet is not in the right cache or at
the right level. Finally, network processing code often does
repetitive work, such as to check packet headers, even when
it is clear what to do in the common case.

The current approach to network I/O acceleration is to put
fixed-function offload features into NICs [46]. While use-
ful, these offloads bypass application and OS concerns and
can thus only perform low-level functions, such as checksum
processing and packet segmentation for commonly used,
standard protocols (e.g., UDP and TCP). Higher-level of-
floads can constrain the system in other ways. For exam-
ple, remote direct memory access (RDMA) [42], is difficult
to adapt to many-to-one client-server communication mod-

els [32; 13], resulting in diminished benefits [25]. On some
high-speed NICs, the need to pin physical memory resources
prevents common server consolidation techniques, such as
memory overcommit.

To address these shortcomings, we propose FlexNIC,
a flexible DMA programming interface for network I/O.
FlexNIC allows applications and OSes to install packet pro-
cessing rules into the NIC, which instruct it to execute sim-
ple operations on packets while exchanging them with host
memory. These rules allow applications and the OS to exert
fine-grained control over how data is exchanged with the
host, including where to put each portion of it. The FlexNIC
programming model can improve packet processing per-
formance while reducing memory system pressure at fast
network speeds.

The idea is not far-fetched. Inexpensive top-of-rack Open-
Flow switches support rule-based processing applied to ev-
ery packet and are currently being enhanced to allow pro-
grammable transformations on packet fields [9]. Fully pro-
grammable NICs that can support packet processing also
exist [35; 51; 10] and higher-level abstractions to program
them are being proposed [22]. We build upon these ideas
to provide a flexible, high-speed network I/O programming
interface for server systems.

The value of our work is in helping guide next generation
NIC hardware design. Is a more or less expressive program-
ming model better? We are aiming to better understand the
middle ground. At one extreme, we can offload the entire
application onto a network processor, but development costs
will be higher. At the other extreme, fixed-function offloads,
such as Intel Flow Director, that match on only a small num-
ber of packet fields and cannot modify packets in flight are
less expressive than FlexNIC, but forego some performance
benefits, as we will show later.

This paper presents the FlexNIC programming model,
which is expressive and yet allows for packet processing
at line rates, and quantifies the potential performance ben-
efits of flexible NIC packet steering and processing for a
set of typical server applications. When compared to a high-
performance user-level network stack, our prototype imple-
mentation achieves 2.3× better throughput for a real-time
analytics platform modeled after Apache Storm, 60% better
throughput for an intrusion detection system, and 60% better
latency for a key-value store. Further, FlexNIC is versatile.
Beyond the evaluated use cases, it is useful for high perfor-
mance resource virtualization and isolation, fast failover, and
can provide high-level consistency for RDMA operations.
We discuss these further use cases in §6.

We make four specific contributions:

• We present the FlexNIC programming model that allows
flexible I/O processing by exposing a match-and-action
programming interface to applications and OSes (§2).

• We implement a prototype of FlexNIC via a combina-
tion of existing NIC hardware features and software em-

ulation using dedicated processor cores on commodity
multi-core computers and I/O device hardware (§2.4).

• We use our prototype to quantify the potential bene-
fits of flexible network I/O for several widely used net-
worked applications, including a key-value store, data
stream processing, and intrusion detection (§3–5).

• We present a number of building blocks that are useful to
software developers wishing to use FlexNIC beyond the
use cases evaluated in this paper (§2.3).

Our paper is less concerned with a concrete hardware
implementation of the FlexNIC model. While we provide
a sketch of a potential implementation, we assume that the
model can be implemented in an inexpensive way at high
line-rates. Our assumption rests on the fact that OpenFlow
switches have demonstrated this capability with minimum-
sized packets at aggregate per-chip rates of over a half terabit
per second [47].

2. FlexNIC Design and Implementation
A number of design goals guide the development of FlexNIC:

• Flexibility. We need a hardware programming model
flexible enough to serve the offload requirements of net-
work applications that change at software development
timescales.

• Line rate packet processing. At the same time the model
may not slow down network I/O by allowing arbitrary
processing. We need to be able to support the line rates
of tomorrow’s network interfaces (at least 100 Gb/s).

• Inexpensive hardware integration. The required addi-
tional hardware has to be economical, such that it fits the
pricing model of commodity NICs.

• Minimal application modification. While we assume
that applications are designed for scalability and high-
performance, we do not assume that large modifications
to existing software are required to make use of FlexNIC.

• OS Integration. The design needs to support the protec-
tion and isolation guarantees provided at the OS, while
allowing applications to install their own offloading prim-
itives in a fast and flexible manner.

To provide the needed flexibility at fast line rates, we ap-
ply the reconfigurable match table (RMT) model recently
proposed for flexible switching chips [8] to the NIC DMA
interface. The RMT model processes packets through a se-
quence of match plus action (M+A) stages.

We make no assumptions about how the RMT model is
implemented on the NIC. Firmware, FPGA, custom silicon,
and network processor based approaches are all equally fea-
sible, but incur different costs. However, we note that a typ-
ical commodity switch uses merchant silicon to support six-
teen 40 Gbps links at a cost of about $10K per switch in vol-
ume, including the switching capacity, deep packet buffers,

protocol handling, and a match plus action (M+A) table for
route control. In fact, it is generally believed that convert-
ing to the more flexible RMT model will reduce costs in the
next generation of switches by reducing the need for spe-
cialized protocol processing [8]. As a result, we believe that
adding line-rate FlexNIC support is both feasible and likely
less expensive than adding full network processor or FPGA
support.

In this section, we provide a design of FlexNIC, present
a set of reusable building blocks implemented on FlexNIC,
and describe how we emulate the proposed FlexNIC func-
tionality with existing hardware or in software.

2.1 Motivating Example
To motivate FlexNIC and its design, we consider the per-
formance bottlenecks for the popular Memcached key-value
store [2] and how they could be alleviated with NIC support.
Memcached is typically used to accelerate common web re-
quests and provides a simple get and put interface to an as-
sociative array indexed by application-level keys. In these
scenarios, service latency and throughput are of utmost im-
portance.

Memory-efficient scaling. To scale request throughput, to-
day’s NICs offer receive-side scaling (RSS), an offload fea-
ture that distributes incoming packets to descriptor queues
based on the client connection. Individual CPU cores are
then assigned to each queue to scale performance with the
number of cores. Additional mechanisms, such as Intel’s
FlowDirector [23], allow OSes to directly steer and migrate
individual connections to specific queues. Linux does so
based on the last local send operation of the connection, as-
suming the same core will send on the connection again.

Both approaches suffer from a number of performance
drawbacks: (1) Hot items are likely to be accessed by multi-
ple clients, reducing cache effectiveness by replicating these
items in multiple CPU caches. (2) When a hot item is modi-
fied, it causes synchronization overhead and global cache in-
validations. (3) Item access is not correlated with client con-
nections, so connection-based steering is not going to help.

FlexNIC allows us to tailor these approaches to Mem-
cached. Instead of assigning clients to server cores, we can
partition the key space [30] and use a separate key space re-
quest queue per core. We can install rules that steer client
requests to appropriate queues, based on a hash of the re-
quested key in the packet. The hash can be computed by
FlexNIC using the existing RSS hashing functionality. This
approach maximizes cache utilization and minimizes cache
coherence traffic. For skewed or hot items, we can use the
NIC to balance the client load in a manner that suits both
the application and the hardware (e.g., by dynamically re-
partitioning or by routing hot requests to two cores that share
the same cache and hence benefit from low latency sharing).

Streamlined request processing. Even if most client re-
quests arrive well-formed at the server and are of a common

Parser F
B
0

MA1 F
B
1

MAm F
B
m

Deparser

Figure 1. RMT switch pipeline.

type—say, GET requests—network stacks and Memcached
have to inspect each packet to determine where the client
payload starts, to parse the client command, and to extract
the request ID. This incurs extra memory and processing
overhead as the NIC has to transfer the headers to the host
just so that software can check and then discard them. Mea-
surements using the Arrakis OS [39] showed that, assuming
kernel bypass, network stack and application-level packet
processing take half of the total server processing time for
Memcached.

With FlexNIC, we can check and discard Memcached
headers directly on the NIC before any transfer takes place
and eliminate the server processing latency. To do so, we in-
stall a rule that identifies GET requests and transfers only the
client ID and requested key to a dedicated fast-path request
queue for GET requests. If the packet is not well-formed, the
NIC can detect this and instead transfer it in the traditional
way to a slow-path queue for software processing. Further, to
support various client hardware architectures, Memcached
has to convert certain packet fields from network to host
byte order. We can instruct the NIC to carry out these simple
transformations for us, before transferring the packets into
host memory.

2.2 FlexNIC Model
We now briefly describe the RMT model used in switches
and then discuss how to adapt it to support application-
specific optimizations of the type described above. We pro-
vide hardware implementation details where they impact the
programming model.

RMT in switches. RMT switches can be programmed with
a set of rules that match on various parts of the packet,
and then apply data-driven modifications to it, all operating
at line rate for the switched packets. This is implemented
using two packet processing pipelines that are connected
by a set of queues allowing for packets to be replicated
and then modified separately. Such a pipeline is shown in
Figure 1. A packet enters the pipeline through the parser,
which identifies all relevant packet fields as described by
the software-defined parse graph. It extracts the specified
fields into a field buffer (FB0) to be used in later processing
stages. The relevant fields pass through the pipeline of M+A
stages (MA1..MAm) and further field buffers (FB1..FBm).
In a typical design, m = 32. An M+A stage matches on
field buffer contents using a match table (of implementation-
defined size), looking up a corresponding action, which is
then applied as we forward to the next field buffer. Inde-
pendent actions can be executed in parallel within one M+A
stage. The deparser combines the modified fields with the

Pn

P1

Ingress Pipeline Queues

Packet Buffer

DMA PipelineDMA

Egress Pipeline

Pn

P1

Figure 2. RMT-enhanced NIC DMA architecture.

original packet data received from the parser to get the fi-
nal packet. To be able to operate at high line rates, multiple
parser instances can be used. In addition to exact matches,
RMT tables can also be configured to perform prefix, range,
and wildcard matches. Finally, a limited amount of switch-
internal SRAM can maintain state across packets and may
be used while processing.

Applying RMT to NICs. To gain the largest benefit from
our approach, we enhance commodity NIC DMA capabili-
ties by integrating three RMT pipelines with the DMA en-
gine, as shown in Figure 2. This allows FlexNIC to process
incoming and outgoing packets independently, as well as
send new packets directly from the NIC in response to host
DMA interactions.

Similar to the switch model, incoming packets from any
of the NIC’s Ethernet ports (P1..Pn) first traverse the ingress
pipeline where they may be modified according to M+A
rules. Packet fields can be added, stripped, or modified, po-
tentially leaving a much smaller packet to be transferred
to the host. Modified packets are stored in a NIC-internal
packet buffer and pointers to the corresponding buffer posi-
tions are added to a number of NIC-internal holding queues
depending on the final destination. In addition to host mem-
ory, hardware implementations may choose to offer P1..Pn

as final destinations, allowing response packets to be for-
warded back out on the network without host interaction.
From each holding queue, packets are dequeued and (de-
pending on the final destination) processed separately in the
DMA pipeline or the egress pipeline. Both can again apply
modifications.

If host memory is the final destination, the DMA pipeline
issues requests to the DMA controller for transferring data
between host memory and packet buffer. DMA parameters
are passed to the DMA engine by adding a special DMA
header to packets in the DMA pipeline, as shown in Table 1.

This design is easily extended to include support for CPU
cache steering [20; 38] and atomic operations [37] if sup-
ported by the PCIe chipset. We can use this design to ex-
change packets with host memory or to carry out more com-
plex memory exchanges. Packet checksums are calculated
on the final result using the existing checksum offload capa-
bilities.

Control flow. In general, actions execute in parallel, but
FlexNIC also allows us to define dependencies among ac-
tions up to a hardware-defined limit. Compilers are respon-
sible for rejecting code with too many dependencies for a
particular hardware implementation. Dependencies are sim-

Field Description

offset Byte offset in the packet
length Number of bytes to transfer
direction From/To memory
memBase Start address in memory
cache Cache level to send data to
core Core Id, if data should go to cache
atomicOp PCIe atomic operation [37]

Table 1. Header format for DMA requests.

ply defined as “executes-before” relationships and may be
chained. When mapping a rule set to a hardware pipeline,
dependencies constrain which physical pipeline stages can
be used for executing individual actions.

Such control flow dependencies are useful to restrict
application-level access to packet filtering under kernel by-
pass [39; 5]. The OS inserts early ingress rules that assign
incoming packets to a subset of the installed application
rules by tagging packets with an identifier. Rule subsets are
associated with applications by requiring them to match on
the identifier. If such rules are inserted appropriately by the
OS, then applications only receive packet flows deemed ac-
cessible by them (e.g., by matching on a specific MAC or IP
address first).
Constraints. To make packet processing at high line-
rates feasible, the RMT model is explicitly not freely pro-
grammable and several restrictions are imposed upon the
user. For example, processing primitives are limited. Multi-
plication, division and floating point operations are typically
not feasible. Hashing primitives, however, are available; this
exposes the hardware that NICs use today for flow steer-
ing. Control flow mechanisms, such as loops and pointers,
are also unavailable, and entries inside M+A tables cannot
be updated on the data path. This precludes complex com-
putations from being used on the data path. We expect the
amount of stateful NIC memory to be constrained; in partic-
ular, our experimental results assume no per-flow state.
Programming language. The programming interface to
FlexNIC is inspired by the P4 language [9] proposed for con-
figuring programmable switches. Parsers, deparsers, packet
headers, and M+A rules can be defined in much the same
way, but we also allow handling NIC-internal SRAM in
M+A stages, with additional actions for accessing this mem-
ory. Integration of the DMA controller, the other major
change from RMT switches, does not require language ex-
tensions, but we add action verbs to simplify programming.

Example. Figure 3 shows the pseudo-code of a FlexNIC
program that implements memory efficient scaling as de-
scribed in the motivating example of Section 2.1. This pro-
gram makes use of all the required elements of our model. To
execute this program, the FlexNIC parser extracts the refer-
enced packet fields out of incoming packets and passes them
to the M+A stages in the ingress pipeline. RMT tables in the

NIC

CPU 1 …

Incoming traffic

Match:
1: IF ip.type == UDP
2: IF udp.port == flexkvs
3: IF flexkvs.req == GET
4: hash = HASH(flexkvs.key)
5: q = queue[hash & k]
6: IF q.head != q.tail

Action:
7: DMA flexkvs.clientid, hash

TO q.descriptor[q.head]
8: q.head = (q.head + 1) % q.size

Client IDs, Hashes

CPU 2 CPU n

queue[1..n]

Segment pool

Log
segments

Hash
table

Figure 3. FlexNIC receive fast-path for FlexKVS: A rule
matches GET requests for a particular key range and writes
only the key hash together with a client identifier to a host
descriptor queue. The queue tail is updated by FlexKVS via
a register write.

ingress pipeline then determine whether the fields match the
IF declarations in the program. The hash in line 4, which
is needed to determine the destination queue, is computed
for every incoming packet after parsing (for example, using
the CRC mechanism used for checksums) and discarded if
not needed later. Line 5 uses a match table to map ranges
of hashes to queues of the cores responsible for those keys.
q.head and q.tail in line 6 are maintained in the NIC-
internal SRAM and are compared in the ingress pipeline.
The action part is inserted into the DMA pipeline. The DMA
pipeline generates packet headers to instruct the DMA en-
gine to transfer the specified packet and metadata fields out
of the pipeline buffers to the host memory address of the
next queue entry. Finally, line 8 updates q.head in the NIC-
internal SRAM in any pipeline stage of the DMA pipeline. A
description of how the FlexKVS application integrates with
the FlexNIC pipeline is deferred to Section 3.

2.3 Building Blocks
During the use case exploration of FlexNIC, a number of
building blocks have crystallized, which we believe are
broadly applicable beyond the use cases presented in this
paper. These building blocks provide easy, configurable ac-
cess to a particular functionality that FlexNIC is useful for.
We present them in this section and will refer back to them
in later sections.
Multiplexing: Multiplexing has proven valuable to acceler-
ate the performance of our applications. On the receive path,
the NIC has to be able to identify incoming packets based
on arbitrary header fields, drop unneeded headers, and place
packets into software-defined queues. On the send path, the
NIC has to read packets from various application-defined
packet queues, prepend the correct headers, and send them
along a fixed number of connections. This building block is
implemented using only ingress/egress M+A rules.

Flow and congestion control: Today’s high-speed NICs
either assume the application is trusted to implement con-
gestion control, or, as in RDMA, enforce a specific model
in hardware. Many protocols can be directly encoded in an
RMT model with simple packet handling and minimal per-
flow state. For example, for flow control, a standard pattern
we use is to configure FlexNIC to automatically generate
receiver-side acks using ingress M+A rules, in tandem with
delivering the payload to a receive queue for application pro-
cessing. If the application falls behind, the receive queue will
fill, the ack is not generated, and the sender will stall.

For congestion control, enforcement needs to be in the
kernel while packet processing is at user level. Many data
centers configure their switches to mark an explicit conges-
tion notification (ECN) bit in each packet to indicate immi-
nent congestion. We configure FlexNIC to pull the ECN bits
out before the packet stream reaches the application; we for-
ward these to the host operating system on the sender to al-
low it to adjust its rate limits without needing to trust the
application.

Other protocols, such as TCP, seem to be stateful and
require complex per-packet logic; although we believe it
possible to use FlexNIC to efficiently transmit and receive
TCP packets, we leave that discussion for future work.
Hashing: Hashing is essential to the scalable operation of
NICs today, and hashes can be just as useful when han-
dling packets inside application software. However, they of-
ten need to be re-computed there, adding overhead. This
overhead can be easily eliminated by relaying the hardware-
computed hash to software. In FlexNIC, we allow flexible
hashing on arbitrary packet fields and relay the hash in a
software-defined packet header via ingress or DMA rules.
Filtering: In addition to multiplexing, filtering can elimi-
nate software overheads that would otherwise be required to
handle error cases, even if very few illegal packets arrive in
practice. In FlexNIC, we can insert ingress M+A rules that
drop unwanted packets or divert them to a separate descrip-
tor queue for software processing.

2.4 Testbed Implementation
To quantify the benefits of FlexNIC, we leverage a combina-
tion of hardware and software techniques that we implement
within a test cluster. Whenever possible, we re-use exist-
ing hardware functionality to achieve FlexNIC functionality.
When this is impossible, we emulate the missing function-
ality in software on a number of dedicated processor cores.
This limits the performance of the emulation to slower link
speeds than would be possible with a hardware implementa-
tion of FlexNIC and thus favors the baseline in our compar-
ison. We describe the hardware and software emulation in
this section, starting with the baseline hardware used within
our cluster.

Testbed cluster. Our evaluation cluster contains six ma-
chines consisting of 6-core Intel Xeon E5-2430 (Sandy

Bridge) systems at 2.2 GHz with 18MB total cache space.
Unless otherwise mentioned, hyperthreading is enabled,
yielding 12 hyperthreads per machine. All systems have an
Intel X520 (82599-based) dual-port 10Gb Ethernet adapter
with both ports connected to the same 10Gb Dell PowerCon-
nect 8024F Ethernet switch. We run Ubuntu Linux 14.04.

Hardware features re-used. We make use of the X520’s
receive-side scaling (RSS) capabilities to carry out fast, cus-
tomizable steering and hashing in hardware. RSS in com-
modity NICs operates on a small number of fixed packet
header fields, such as IP and TCP/UDP source and desti-
nation addresses/ports, and are thus not customizable. We
attain limited customization capability by configuring RSS
to operate on IPv6 addresses, which yields the largest con-
tiguous packet area to operate upon—32 bytes—and then
moving the relevant data into these fields. This is sufficient
for our experiments, as MAC addresses and port numbers
are enough for routing within our simple network. RSS com-
putes a 32-bit hash on the 32 byte field, which it also writes
to the receive descriptor for software to read. It then uses
the hash as an index into a 128-entry redirection table that
determines the destination queue for an incoming packet.

Software implementation. We implement other needed
functionality in a software NIC extension that we call Soft-
FlexNIC. Soft-FlexNIC implements flexible demultiplexing,
congestion control, and a customizable DMA interface to the
host. To do this, Soft-FlexNIC uses dedicated host cores (2
send and 2 receive cores were sufficient to handle 10Gb/s)
and a shared memory interface to system software that mim-
ics the hardware interface. For performance, Soft-FlexNIC
makes use of batching, pipelining, and lock-free queueing.
Batching and pipelining work as described in [19]. Lock-
free queueing is used to allow scalable access to the em-
ulated host descriptor queue from multiple Soft-FlexNIC
threads by atomically reserving queue positions via a com-
pare and swap operation. We try to ensure that our emula-
tion adequately approximates DMA interface overheads and
NIC M+A parallelism, but our approach may be optimistic
in modelling PCI round trips, as these cannot be emulated
easily using CPU cache coherence interactions.

Baseline. In order to provide an adequate comparison, we
also run all software on top of the high-performance Extaris
user-level network stack [39] and make this our baseline. Ex-
taris runs minimal code to handle packets and is a zero-copy
and scalable network stack. This eliminates the overheads
inherent in a kernel-level network stack and allows us to fo-
cus on the improvements that are due to FlexNIC.

3. Case Study: Key-Value Store
We now describe the design of a key-value store, FlexKVS,
that is compatible with Memcached [2], but whose per-
formance is optimized using the functionality provided by
FlexNIC. To achieve performance close to the hardware

limit, we needed to streamline the store’s internal design,
as we hit several scalability bottlenecks with Memcached.
The authors of MICA [30] had similar problems, but un-
like MICA, we assume no changes to the protocol or client
software. We discuss the design principles in optimizing
FlexKVS before outlining its individual components.

Minimize cache coherence traffic. FlexKVS achieves
memory-efficient scaling by partitioning the handling of the
key-space across multiple cores and using FlexNIC to steer
incoming requests to the appropriate queue serving a given
core. Key-based steering improves cache locality, minimizes
synchronization, and improves cache utilization, by handling
individual keys on designated cores without sharing in the
common case. To support dynamic changes to the key as-
signment for load balancing, FlexKVS’s data structures are
locked; in between re-balancing (the common case), each
lock will be cached exclusive to the core.

Specialized critical path. We further optimize FlexKVS
by offloading request processing work to FlexNIC and
specializing the various components on the critical path.
FlexNIC checks headers, extracts the request payload, and
performs network to host byte order tranformations. With
these offloads, the FlexKVS main loop for receiving a re-
quest from the network, processing it and then sending a re-
sponse consists of fewer than 3,000 x86 instructions includ-
ing error handling. FlexKVS also makes full use of the zero-
copy capabilities of Extaris. Only one copy is performed
when storing items upon a SET request.
Figure 3 depicts the overall design, including a set of simpli-
fied FlexNIC rules to steer GET requests for a range of keys
to a specific core.

3.1 FlexKVS Components
We now discuss the major components of FlexKVS: the hash
table and the item allocator.

Hash table. FlexKVS uses a block chain hash table [30].
To avoid false sharing, each table entry has the size of a full
cache line, which leaves room for a spin-lock, multiple item
pointers (five on x86-64), and the corresponding hashes. In-
cluding the hashes on the table entries avoids dereferencing
pointers and touching cache lines for non-matching items. If
more items hash to an entry than there are available pointers
the additional items are chained in a new entry via the last
pointer. We use a power of two for the number of buckets in
the table. This allows us to use the lowest k bits of the hash to
choose a bucket, which is easy to implement in FlexNIC. k is
chosen based on the demultiplexing queue table size loaded
into the NIC (up to 128 entries in our prototype).

Item allocation. The item allocator in FlexKVS uses a
log [44] for allocation as opposed to a slab allocator used
in Memcached. This provides constant-time allocation and
minimal cache access, improving overall request processing
time. To minimize synchronization, the log is divided into

fixed-size segments. Each core has exactly one active seg-
ment that is used for satisfying allocation requests. A cen-
tralized segment pool is used to manage inactive segments,
from which new segments are allocated when the active seg-
ment is full. Synchronization for pool access is required, but
is infrequent enough to not cause noticeable overhead.

Item deletion. To handle item deletions, each log segment
includes a counter of the number of bytes that have been
freed in the segment. When an item’s reference count drops
to zero, the item becomes inactive and the corresponding
segment header is looked up and the counter incremented.
A background thread periodically scans segment headers
for candidate segments to compact.When compacting, active
items in the candidate segment are re-inserted into a new
segment and inactive items deleted. After compaction, the
segment is added to the free segment pool.

3.2 FlexNIC Implementation
The FlexNIC implementation consists of key-based steering
and a custom DMA interface. We describe both.

Key-based steering. To implement key-based steering, we
utilize the hashing and demultiplexing building blocks on
the key field in the FlexKVS request packet, as shown in
Figure 3. When enqueuing the packet to the appropriate
receive queue based on the hash of the key, the NIC writes
the hash into a special packet header for software to read.
This hash value is used by FlexKVS for the hash table
lookup.

Custom DMA interface. FlexNIC can also perform the
item log append on SET requests, thereby enabling full zero-
copy operation for both directions, and removal of packet
parsing for SET requests in FlexKVS. To do so, FlexKVS
registers a small number (four in our prototype) of log seg-
ments per core via a special message enqueued on a descrip-
tor queue. These log segments are then filled by the NIC as
it processes SET requests. When a segment fills up, FlexNIC
enqueues a message to notify FlexKVS to register more seg-
ments.

FlexNIC still enqueues a message for each incoming re-
quest to the corresponding core, so remaining software pro-
cessing can be done. For GET requests, this entails a hash
table lookup. For SET requests, the hash table needs to be
updated to point to the newly appended item.

Adapting FlexKVS to the custom DMA interface re-
quired adding 200 lines for interfacing with FlexNIC, adding
50 lines to the item allocator for managing NIC log seg-
ments, and modifications to request processing reducing the
original 500 lines to 150.

3.3 Performance Evaluation
We evaluate different levels of integration between FlexKVS
and the NIC. The baseline runs on the Extaris network stack
using UDP and RSS, similar to the Memcached configura-
tion in Arrakis [39]. A more integrated version uses FlexNIC

 0

 2

 4

 6

 8

1 2 3 4 5

T
h
ro

u
g
h
p
u
t
[m

 o
p
 /
 s

]

Number of CPU cores

Memcached
FlexKVS/Linux
FlexKVS/Flow
FlexKVS/Key

Figure 4. FlexKVS throughput scalability with flow-
based and key-based steering. Results for Memcached and
FlexKVS on Linux are also provided.

to perform the hash calculation and steer requests based on
their key, and the third version adds the FlexNIC custom
DMA interface. FlexKVS performance is reduced by hyper-
threading and so we disable it for these experiments, leaving
6 cores per machine.

Key-based Steering. We compare FlexKVS throughput
with flow-based steering against key-based steering using
FlexNIC. We use three machines for this experiment, one
server for running FlexKVS and two client machines to gen-
erate load. One NIC port of each client machine is used,
and the server is connected with both ports using link ag-
gregation, yielding a 20 Gb/s link. The workload consists of
100,000 key-value pairs of 32 byte keys and 64 byte values,
with a skewed access distribution (zipf, s = 0.9). The work-
load contains 90% GET requests and 10% SET requests.
Throughput was measured over 2 minutes after 1 minute of
warm-up.

Figure 4 shows the average attained throughput for key-
and flow-based steering over an increasing number of server
cores. In the case of one core, the performance improve-
ment in key-based steering is due to the computation of the
hash function on the NIC. As the number of cores increases,
lock contention and cache coherence traffic cause increas-
ing overhead for flow-based steering. Key-based steering
avoids these scalability bottlenecks and offers 30-45% bet-
ter throughput. Note that the throughput for 4+ cores with
key-based steering is limited by PCIe bus bandwidth, as the
workload is issuing a large number of small bus transactions.
We thus stop the experiment after 5 cores. Modifying the
NIC driver to use batching increases throughput to 13 mil-
lion operations per second.

Specialized DMA interface. The second experiment mea-
sures the server-side request processing latency. Three dif-
ferent configurations are compared: flow-based steering,
key-based steering, and key-based steering with the special-
ized DMA interface described above. We measure time spent
from the point an incoming packet is seen by the network
stack to the point the corresponding response is inserted into
the NIC descriptor queue.

Table 2 shows the median and 90th percentile of the num-
ber of cycles per request measured over 100 million requests.

Steering

Flow Key DMA

Median 1110 690 440
90th Percentile 1400 1070 680

Table 2. FlexKVS request processing time rounded to 10
cycles.

Count

Tweets

Rank

Agg.
Rank

Tuples

Output

Count Rank

… …

Tweets

…

Figure 5. Top-n Twitter users topology.

Key-based steering reduces the number of CPU cycles by
38% over the baseline, matching the throughput results pre-
sented above. The custom DMA interface reduces this num-
ber by another 36%, leading to a cumulative reduction of
60%. These performance benefits can be attributed to three
factors: 1) with FlexNIC limited protocol processing needs
to be performed on packets, 2) receive buffer management is
not required, and 3) log-appends for SET requests are exe-
cuted by FlexNIC.

We conclude that flexible hashing and demultiplexing
combined with the FlexNIC DMA engine yield considerable
performance improvements in terms of latency and through-
put for key-value stores. FlexNIC can efficiently carry out
packet processing, buffer management, and log data struc-
ture management without additional work on server CPUs.

4. Case Study: Real-time Analytics
Real-time analytics platforms are useful tools to gain instan-
taneous, dynamic insight into vast datasets that change fre-
quently. To be considered “real-time”, the system must be
able to produce answers within a short timespan (typically
within a minute) and process millions of dataset changes
per second. To do so, analytics platforms utilize data stream
processing techniques: A set of worker nodes run continu-
ously on a cluster of machines; data tuples containing up-
dates stream through them according to a dataflow process-
ing graph, known as a topology. Tuples are emitted and con-
sumed worker-to-worker in the topology. Each worker can
process and aggregate incoming tuples before emitting new
tuples. Workers that emit tuples derived from an original data
source are known as spouts.

In the example shown in Figure 5, consider processing
a live feed of tweets to determine the current set of top-
n tweeting users. First, tweets are injected as tuples into
a set of counting workers to extract and then count the
user name field within each tuple. The rest of the tuple is
discarded. Counters are implemented with a sliding window.
Periodically (every minute in our case), counters emit a tuple

Node Count

Count

Rank

Rank

Demux

Tuples
from
other
nodes

Mux

Tuples
to
other
nodes

Figure 6. Storm worker design. 2 counters and 2 rankers run
concurrently in this node. (De-)mux threads route incom-
ing/outgoing tuples among network connections and work-
ers.

for each active user name with its count. Ranking workers
sort incoming tuples by count. They emit the top-n counted
users to a single aggregating ranker, producing the final
output rank to the user.

As shown in Figure 5, the system scales by replicating
the counting and ranking workers and spreading incoming
tuples over the replicas. This allows workers to process the
data set in parallel. Tuples are flow controlled when sent
among workers to minimize loss. Many implementations
utilize the TCP protocol for this purpose.

We have implemented a real-time analytics platform
FlexStorm, following the design of Apache Storm [49].
Storm and its successor Heron [28] are deployed at large-
scale at Twitter. For high performance, we implement Storm’s
“at most once” tuple processing mode. In this mode, tuples
are allowed to be dropped under overload, eliminating the
need to track tuples through the topology. For efficiency,
Storm and Heron make use of multicore machines and de-
ploy multiple workers per machine. We replicate this behav-
ior.

FlexStorm uses DCCP [27] for flow control. DCCP sup-
ports various congestion control mechanisms, but, unlike
TCP, is a packet-oriented protocol. This simplifies imple-
mentation in FlexNIC. We use TCP’s flow-control mecha-
nism within DCCP, similar to the proposal in [17], but using
TCP’s cumulative acknowledgements instead of acknowl-
edgement vectors and no congestion control of acknowl-
edgements.

As topologies are often densely interconnected, both sys-
tems reduce the number of required network connections
from per-worker to per-machine connections. On each ma-
chine, a demultiplexer thread is introduced that receives all
incoming tuples and forwards them to the correct executor
for processing. Similarly, outgoing tuples are first relayed to
a multiplexer thread that batches tuples before sending them
onto their destination connections for better performance.
Figure 6 shows this setup, which we replicate in FlexStorm.

4.1 FlexNIC Implementation
As we will see later, software demultiplexing has high
overhead and quickly becomes a bottleneck. We can use

Match:
IF ip.type == DCCP
IF dccp.dstport == FlexStorm

Action:
SWAP(dccp.srcport, dccp.dstport)
dccp.type = DCCP ACK
dccp.ack = dccp.seq
dccp.checksum = CHECKSUM(dccp)
IP REPLY

Figure 7. Acknowledging incoming FlexStorm tuples in
FlexNIC.

FlexNIC to mitigate this overhead by demultiplexing tuples
in the NIC. Demultiplexing works in the same way as for
FlexKVS, but does not require hashing. We strip incoming
packets of their headers and deliver contained tuples to the
appropriate worker’s tuple queue via a lookup table that as-
signs destination worker identifiers to queues. However, our
task is complicated by the fact that we have to enforce flow
control.

To implement flow-control at the receiver in FlexNIC, we
acknowledge every incoming tuple immediately and explic-
itly, by crafting an appropriate acknowledgement using the
incoming tuple as a template. Figure 7 shows the required
M+A pseudocode. To craft the acknowledgement, we swap
source and destination port numbers, set the packet type ap-
propriately, copy the incoming sequence number into the ac-
knowledgement field, and compute the DCCP checksum. Fi-
nally, we send the reply IP packet, which does all the appro-
priate modifications to form an IP response, such as swap-
ping Ethernet and IP source and destination addresses and
computing the IP checksum.

To make use of FlexNIC we need to adapt FlexStorm
to read from our custom queue format, which we optimize
to minimize PCIe round-trips by marking whether a queue
position is taken with a special field in each tuple’s header.
To do so, we replace FlexStorm’s per-worker tuple queue
implementation with one that supports this format, requiring
a change of 100 lines of code to replace 4 functions and their
data structures.

4.2 Evaluation
We evaluate the performance of Storm and various FlexS-
torm configurations on the top-n user topology. Our input
workload is a stream of 476 million Twitter tweets collected
between June–Dec 2009 [29]. Figure 8 and Table 3 show
average achievable throughput and latency at peak load on
this workload. Throughput is measured in tuples processed
per second over a runtime of 20 seconds. Latency is also
measured per tuple and is broken down into time spent in
processing, and in input and output queues, as measured at
user-level, within FlexStorm. For comparison, data center
network packet delay is typically on the order of tens to hun-
dreds of microseconds.

We first compare the performance of FlexStorm to that of
Apache Storm running on Linux. We tune Apache Storm for
high performance: we use “at most once” processing, dis-
able all logging and debugging, and configure the optimum
amount of worker threads (equal to the number of hyper-

 0

 1

 2

 3

 4

 5

 6

Balanced Grouped

T
h
ro

u
g
h
p
u
t
[m

 t
u
p
le

s
 /
 s

]

Apache Storm
FlexStorm/Linux

FlexStorm/Extaris
FlexStorm/FlexNIC

Figure 8. Average top-n tweeter throughput on various
Storm configurations. Error bars show min/max over 20
runs.

threads minus two multiplexing threads). We deploy both
systems in an identical fashion on 3 machines of our eval-
uation cluster. In this configuration Apache Storm decides
to run 4 replicas each of spouts, counters and intermediate
rankers. Storm distributes replicas evenly over the existing
hyperthreads and we follow this distribution in FlexStorm
(Balanced configuration). By spreading the workload evenly
over all machines, the amount of tuples that need to be pro-
cessed at each machine is reduced, relieving the demulti-
plexing thread somewhat. To show the maximum attainable
benefit with FlexNIC, we also run FlexStorm configurations
where all counting workers are executing on the same ma-
chine (Grouped configuration). The counting workers have
to sustain the highest amount of tuples and thus exert the
highest load on the system.

Without FlexNIC, the performance of Storm and FlexS-
torm are roughly equivalent. There is a slight improvement
in FlexStorm due to its simplicity. Both systems are limited
by Linux kernel network stack performance. Even though
per-tuple processing time in FlexStorm is short, tuples spend
several milliseconds in queues after reception and before
emission. Queueing before emission is due to batching in
the multiplexing thread, which is configured to batch up
to 10 milliseconds of tuples before emission in FlexStorm
(Apache Storm uses up to 500 milliseconds). Input queue-
ing is minimal in FlexStorm as it is past the bottleneck of the
Linux kernel and thus packets are queued at a lower rate than
they are removed from the queue. FlexStorm performance is
degraded to 34% when grouping all counting workers, as all
tuples now go through a single bottleneck kernel network
stack, as opposed to three.

Running all FlexStorm nodes on the Extaris network
stack yields a 2× (Balanced) throughput improvement. In-
put queuing delay has increased as tuples are queued at a
higher rate. The increase is offset by a decrease in output
queueing delay, as packets can be sent faster due to the
high-performance network stack. Overall, tuple processing
latency has decreased 16% versus Linux. The grouped con-
figuration attains a speedup of 2.84× versus the equivalent
Linux configuration. The bottleneck in both cases is the de-
multiplexer thread.

Input Processing Output Total

Linux 6.68 µs 0.6 µs 12 ms 12 ms
Extaris 4 ms 0.8 µs 6 ms 10 ms
FlexNIC – 0.8 µs 6 ms 6 ms

Table 3. Average FlexStorm tuple processing time.

Running all FlexStorm nodes on FlexNIC yields a 2.14×
(Balanced) performance improvement versus the Extaris
version. Using FlexNIC has eliminated the input queue and
latency has decreased by 40% versus Extaris. The grouped
configuration attains a speedup of 2.31×. We are now lim-
ited by the line-rate of our Ethernet network card.

We conclude that moving application-level packet demul-
tiplexing functionality into the NIC yields performance ben-
efits, while reducing the amount of time that tuples are held
in queues. This provides the opportunity for tighter real-
time processing guarantees under higher workloads using
the same equipment. The additional requirement for receive-
side flow control does not pose an implementation problem
to FlexNIC. Finally, demultiplexing in the NIC is more ef-
ficient. It eliminates the need for additional demultiplexing
threads, which can grow large under high line-rates.

We can use these results to predict what would happen at
higher line-rates. The performance difference of roughly 2×
between FlexNIC and a fast software implementation shows
that we would require at least 2 fully utilized hyperthreads
to perform demultiplexing for FlexStorm at a line-rate of
10Gb/s. As line-rate increases, this number increases propor-
tionally, taking away threads that could otherwise be used to
perform more analytics.

5. Case Study: Intrusion Detection
In this section we discuss how we leverage flexible packet
steering to improve the throughput achieved by the Snort
intrusion detection system [43]. Snort detects malicious ac-
tivity, such as buffer overflow attacks, malware, and injec-
tion attacks, by scanning for suspicious patterns in individ-
ual packet flows.

Snort only uses a single thread for processing packets,
but is commonly scaled up to multiple cores by running
multiple Snort processes that receive packets from separate
NIC hardware queues via RSS [19]. However, since many
Snort patterns match only on subsets of the port space (for
example, only on source or only on destination ports), we
end up using these patterns on many cores, as RSS spreads
connections by a 4-tuple of IP addresses and port numbers.
Snort’s working data structures generally grow to 10s of
megabytes for production rule sets, leading to high cache
pressure. Furthermore, the Toeplitz hash commonly used for
RSS is not symmetric for the source and destination fields,
meaning the two directions of a single flow can end up in
different queues, which can be problematic for some stateful
analyses where incoming and outgoing traffic is examined.

Hashing FlexNIC

Min Avg Max Min Avg Max

Kpps 103.0 103.7 104.7 166.4 167.3 167.9
Mbps 435.9 439.8 444.6 710.4 715.6 718.6
Accesses 546.0 553.3 559.3 237.0 241.4 251.0
Misses 26.7 26.7 26.7 19.0 19.2 19.2

Table 4. Snort throughput and L3 cache behavior over 10
runs.

5.1 FlexNIC Implementation
Our approach to improve Snort’s performance is similar to
FlexKVS. We improve Snort’s cache utilization by steering
packets to cores based on expected pattern access, so as to
avoid replicating the same state across caches. Internally,
Snort groups rules into port groups and each group is then
compiled to a deterministic finite automaton that implements
pattern matching for the rules in the group. When processing
a packet, Snort first determines the relevant port groups and
then executes all associated automatons.

We instrument Snort to record each distinct set of port
groups matched by each packet (which we call flow groups)
and aggregate the number of packets that match this set and
the total time spent processing these packets. In our experi-
ence, this approach results in 30-100 flow groups. We use
these aggregates to generate a partition of flow groups to
Snort processes, balancing the load of different flow groups
using a simple greedy allocation algorithm that starts assign-
ing the heaviest flow groups first.

This partitioning can then be used in FlexNIC to steer
packets to individual Snort instances by creating a mapping
table that maps packets to cores, similar to the approach in
FlexStorm. We also remedy the issue with the Toeplitz hash
by instructing FlexNIC to order 4-tuple fields arithmetically
by increasing value before calculating the hash, which elim-
inates the assymetry.

5.2 Evaluation
We evaluate the FlexNIC-based packet steering by compar-
ing it to basic hash-based steering. For our experiment, we
use a 24GB pcap trace of the ICTF 2010 competition [1] that
is replayed at 1Gbps. To obtain the flow group partition we
use a prefix of 1/50th of the trace, and then use the rest to
evaluate performance. For this experiment, we run 4 Snort
instances on 4 cores on one socket of a two-socket 12-core
Intel Xeon L5640 (Westmere) system at 2.2 GHz with 14MB
total cache space. The other socket is used to replay the trace
via Soft-FlexNIC implementing either configuration.

Table 4 shows the throughput and L3 cache behavior for
hashing and our improved FlexNIC steering. Throughput,
both in terms of packets and bytes processed, increases by
roughly 60%, meaning more of the packets on the network
are received and processed without being dropped. This im-
provement is due to the improved cache locality: the num-

ber of cache accesses to the L3 cache per packet is reduced
by 56% because they hit in the L2 or L1 cache, and the
number of misses in the L3 cache per packet is also re-
duced by roughly 28%. These performance improvements
were achieved without modifying Snort.

We conclude that flexible demultiplexing can improve ap-
plication performance and cache utilization even without re-
quiring application modification. Application memory ac-
cess patterns can be analyzed separately from applications
and appropriate rules inserted into FlexNIC by the system
administrator.

6. Other Applications
So far we discussed our approach in the context of sin-
gle applications and provided case studies that quantify the
application-level improvements made possible by FlexNIC.
In this section, we identify additional use cases with some
preliminary analysis on how FlexNIC can be of assistance in
these scenarios. First, we discuss how to enhance and opti-
mize OS support for virtualization (§6.1). Then, we present
a number of additional use cases that focus on the use of
flexible I/O to improve memory system performance (§6.2).

6.1 Virtualization Support
FlexNIC’s functionality can aid virtualization in a number of
different ways. We discuss below how FlexNIC can optimize
the performance of a virtual switch, how it can provide
better resource isolation guarantees, and how it can assist
in transparent handling of resource exhaustion and failure
scenarios.

Virtual Switch. Open vSwitch (OvS) [40] is an open
source virtual switch designed for networking in virtual-
ized data center environments. OvS forwards packets among
physical and virtual NIC ports, potentially modifying pack-
ets on the way. It exposes standard management inter-
faces and allows advanced forwarding functions to be pro-
grammed via OpenFlow [31] M+A rules, a more limited
precursor to P4 [9]. OvS is commonly used in data centers
today. It supports various advanced switching features, in-
cluding GRE tunneling.

To realize high performance packet forwarding without
implementing all of OpenFlow in the OS kernel, OvS parti-
tions its workflow into two components: a system userspace
daemon and a simple kernel datapath module. The datapath
module is able to process and forward packets according to
simple 5-tuple and wildcard matches. If this is not enough
to classify a flow, the packet is deferred to the userspace
daemon, which implements the full matching capabilities of
OpenFlow. After processing, the daemon relays its forward-
ing decision, potentially along with a concise 5-tuple match
for future use, back to the datapath module.

To show the overhead involved in typical OvS operation,
we conduct an experiment, sending a stream of packets from
4 source machines to 8 VMs executing on a single server

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 1 2 3 4 5

C

or
es

Bandwidth (Gbps)

Datapath module
GRE

System daemon

Figure 9. CPU utilization of OvS while tunneling.

machine that executes OvS to forward incoming packets to
the appropriate VM. The traffic from the source machines is
GRE tunneled and the tunnel is terminated at the server, so
OvS decapsulates packets while forwarding. We repeat the
experiment as we increase the offered traffic at the clients.

Figure 9 shows the CPU overheads involved in this sim-
ple experiment, broken down into system daemon, datapath
module, and GRE decapsulation overhead. We can see that
the CPU overhead of the datapath module increases linearly
with increasing traffic, as it has to carry out more matching
and decapsulation activity. On average, the datapath module
increases CPU utilization by 10% for each Gb of traffic of-
fered. We can extrapolate these results to understand what
would happen at higher line rates: We would require 1 full
CPU core at 10 Gb/s, up to 4 CPU cores devoted to OvS
handling on a 40 Gb/s link and up to 10 CPU cores on a 100
Gb/s link. The overhead for GRE decapsulation increases
linearly, too, but at a slower pace: roughly 1% per offered
Gb. The overhead of the system daemon stays flat, which is
expected, as it is used only for more complex functionality.

To remove these overheads, we can implement the func-
tionality of the kernel datapath module within FlexNIC. To
do so, we simply offload the 5-tuple and wildcard match
rules. If actions are as simple as GRE tunnel decapsulation,
we can implement them in FlexNIC, too, by removing the
relevant packet headers after matching, and gain even more
savings. More complex actions might need to be relayed
back to kernel-space, saving only the overhead of OvS pro-
cessing.

We conclude that today’s data center environments re-
quire flexible packet handling at the edge, which in turn re-
quires CPU resources. While the amount of consumed CPU
resource is tenable at 10 Gb/s, it can quickly become pro-
hibitive as line rates increase. FlexNIC allows offloading a
large fraction of these overheads, freeing up valuable CPU
resources to run application workloads.

Resource isolation. The ability to isolate and prioritize
network flows is important in a range of load conditions [3].
A server receiving more requests than it can handle could de-

cide to only accept specific request types, for example based
on a priority specified in the request header. On servers that
are not fully saturated, careful scheduling can reduce the
average latency, for example by prioritizing cheap requests
over expensive requests in a certain ratio and thereby reduc-
ing the overall tail latency. Achieving isolation implies min-
imizing the required resources that need to be invested be-
fore a priority can be assigned or a request can be dropped
[14; 33]. As network bandwidth increases, the cost of clas-
sifying requests in software can quickly become prohibitive.
FlexNIC can prioritize requests in hardware, and enqueue
requests in different software queues based on priorities, or
even reject requests, possibly after notifying the client.

Resource virtualization. Cloud services can be consoli-
dated on a single server using resource virtualization. This
allows the sharing of common hardware resources using
techniques such as memory overcommit to save cost. How-
ever, traditional DMA operations require the corresponding
host memory to be present, which is achieved by pinning the
memory in the OS. With multi-queue NICs, kernel-bypass
[39; 5], and RDMA, the amount of memory pinned perma-
nently can be very large (cf. FaRM [13]), preventing effec-
tive server consolidation. Even without pinning, accesses to
non-present pages are generally rare, so all that is required
is a way to gracefully handle faults when they occur. Us-
ing FlexNIC, the OS can insert a rule that matches on DMA
accesses to non-present regions and redirects them to a slow-
path that implements these accesses in software. In this way
these faults are handled in a manner fully transparent to ap-
plications.

Fast failover. User-level services can fail. In that case a
hot standby or replica can be an excellent fail-over point if
we can fail-over quickly. Using FlexNIC, an OS detecting
a failed user-level application can insert a rule to redirect
traffic to a replica, even if it resides on another server. Redi-
rection can be implemented by a simple rule that matches
the application’s packets and then forwards incoming pack-
ets by rewriting the headers and enqueuing them to be sent
out through the egress pipeline. No application-level modi-
fications are necessary for this approach and redirection can
occur with minimal overhead.

6.2 Flexible Memory Steering
FlexNIC’s flexible packet processing provides additional op-
portunities for enhancing communication abstractions as
well as optimizing memory system performance. We de-
scribe some of these use cases below.

Consistent RDMA. RDMA provides low latency access to
remote memory. However, it does not support consistency
of concurrently accessed data structures. This vastly compli-
cates the design of applications sharing memory via RDMA
(e.g., self-verifying data structures in Pilaf [32]). FlexNIC
can be used to enhance RDMA with simple application-

level consistency properties. For example, when concur-
rently writing to a hashtable, FlexNIC could check whether
the target memory already contains an entry by atomically
[37] testing and setting a designated memory location and,
if so, either defer management of the operation to the CPU
or fail it.

Cache flow control. A common problem when streaming
data to caches (found in DDIO-based systems) is that the
limited amount of available host cache memory can easily
overflow with incoming network packets if software is not
quick enough to process them. In this case, the cache spills
older packets to DRAM causing cache thrashing and perfor-
mance collapse when software pulls them back in the cache
to process them. To prevent this, we can implement a simple
credit-based flow control scheme: The NIC can increment
an internal counter for each packet written to a host cache.
If the counter is above a threshold, the NIC instead writes to
DRAM. Software acknowledges finished packets by sending
an application-defined packet via the NIC that decrements
the counter. This ensures that packets stay in cache for as
long as needed to keep performance stable.

GPU networking. General purpose computation capabil-
ities on modern GPUs are increasingly being exploited to
accelerate network applications [18; 24; 48; 26]. So far all
these approaches require CPU involvement on the critical
path for GPU-network communication. GPUnet [26] ex-
ploits P2P DMA to write packet payloads directly into GPU
memory from the NIC, but the CPU is still required to
forward packet notifications to/from the GPU using an in-
memory ring buffer. Further, GPUnet relies on RDMA for
offloading protocol processing to minimize inefficient se-
quential processing on the GPU. With FlexNIC, notifica-
tions about received packets can be written directly to the
ring buffer because arbitrary memory writes can be crafted,
thereby removing the CPU from the critical path for receiv-
ing packets. In addition FlexNIC’s offload capabilities can
enable the use of conventional protocols such as UDP, by
offloading header verification to hardware.

7. Related Work
NIC-Software co-design. Previous attempts to improve
the NIC processing performance used new software inter-
faces to reduce the number of required PCIe transitions [16]
and to enable kernel-bypass [41; 50; 15]. Remote direct
memory access (RDMA) goes a step further, entirely by-
passing the remote CPU for this specific use-case. Scale-out
NUMA [36] extends the RDMA approach by integrating a
remote memory access controller with the processor cache
hierarchy that automatically translates certain CPU memory
accesses into remote memory operations. Portals [4] is sim-
ilar to RDMA, but adds a set of offloadable memory and
packet send operations triggered upon matching packet ar-
rival. A machine model has been specified to allow offload

of various communication protocols using these operations
[12]. Our approach builds upon these ideas by providing a
NIC programming model that can leverage these features in
an application-defined way to support efficient data delivery
to the CPU, rather than complete offload to the NIC.

High-performance software design. High-performance
key-value store implementations, such as HERD [25], Pi-
laf [32], and MICA [30], use NIC hardware features, such as
RDMA, to gain performance. They require client modifica-
tions to be able to make use of these features. For example,
they require clients to issue RDMA reads (Pilaf) or writes
(HERD) to bypass network stacks, or for clients to compute
hashes (Pilaf, MICA). FaRM [13] generalizes this approach
to other distributed systems. In contrast, FlexNIC requires
modifications only in the server’s NIC.

Furthermore, FlexNIC allows logic to be implemented at
the server side, reducing the risk of client-side attacks and
allowing the use of server-sided state without long round-
trip delays. For example, FlexKVS can locally change the
runtime key partitioning among cores without informing the
client—something that would otherwise be impractical with
tens of thousands of clients.

MICA [30] can be run either in exclusive read exclusive
write (EREW) or concurrent read exclusive write (CREW)
mode. EREW eliminates any cache coherence traffic be-
tween cores, while CREW allows reads to popular keys to
be handled by multiple cores at the cost of cache coherence
traffic for writes and reduced cache utilization because the
corresponding cache lines can be in multiple cores’ private
caches. FlexKVS can decide which mode to use for each
individual key on the server side based on the keys’ access
patterns, allowing EREW to be used for the majority of keys
and CREW to be enabled for very read heavy keys.

Programmable network hardware. In the wake of the
software-defined networking trend, a rich set of customiz-
able switch data planes have been proposed [9; 31]. For
example, the P4 programming language proposal [9] allows
users rich switching control based on arbitrary packet fields,
independent of underlying switch hardware. We adapt this
idea to provide similar functionality for the NIC-host inter-
face. SoftNIC [19] is an attempt to customize NIC func-
tionality by using dedicated CPU cores running software
extensions in the data path. We extend upon this approach in
Soft-FlexNIC.

On the host, various programmable NIC architectures
have been developed. Fully programmable network proces-
sors are commercially available [35; 10], as are FPGA-based
solutions [51]. Previous research on offloading functionality
to these NICs has focused primarily on entire applications,
such as key-value storage [7; 11] and map-reduce function-
ality [45]. In contrast, FlexNIC allows for the flexible of-
fload of performance-relevant packet processing functional-
ity, while allowing the programmer the flexibility to keep
the rest of the application code on the CPU, improving pro-

grammer productivity and shortening software development
cycles.

Direct cache access. Data Direct I/O (DDIO) [21] attaches
PCIe directly to an L3 cache. DDIO is software-transparent
and as such does not easily support the integration with
higher levels of the cache hierarchy. Prior to DDIO, direct
cache access (DCA) [20] supported cache prefetching via
PCIe hints sent by devices and is now a PCI standard [38].
With FlexNIC support, DCA tags could be re-used by sys-
tems to fetch packets from L3 to L1 caches. While not yet
supported by commodity servers, tighter cache integration
has been shown to be beneficial in systems that integrate
NICs with CPUs [6].

8. Conclusion
As multicore servers scale, the boundaries between NIC
and switch are blurring: NICs need to route packets to ap-
propriate cores, but also transform and filter them to re-
duce software processing and memory subsystem overheads.
FlexNIC provides this functionality by extending the NIC
DMA interface. Performance evaluation for a number of ap-
plications shows throughput improvements of up to 2.3×
when packets are demultiplexed based on application-level
information, and up to 60% reduction in request process-
ing time if the DMA interface is specialized for the applica-
tion on a commodity 10 Gb/s network. These results increase
proportionally to the network line-rate.

FlexNIC also integrates nicely with current software-
defined networking trends. Core network switches can tag
packets with actions that can be executed by FlexNIC. For
example, this allows us to exert fine-grained server control,
such as load balancing to individual server cores, at a pro-
grammable core network switch when this is more efficient.

Acknowledgments
This work was supported by NetApp, Google, and the Na-
tional Science Foundation (CNS-0963754, CNS-1518702).
We would like to thank the anonymous reviewers and our
shepherd, Steve Reinhardt, for their comments and feedback.
We also thank Taesoo Kim, Luis Ceze, Jacob Nelson, Tim-
othy Roscoe, and John Ousterhout for their input on early
drafts of this paper. Jialin Li and Naveen Kr. Sharma collab-
orated on a class project providing the basis for FlexNIC.

References
[1] http://ictf.cs.ucsb.edu/ictfdata/2010/dumps/.

[2] http://memcached.org/.

[3] G. Banga, P. Druschel, and J. C. Mogul. Resource containers:
A new facility for resource management in server systems. In
3rd USENIX Symposium on Operating Systems Design and
Implementation, OSDI, 1999.

[4] B. W. Barrett, R. Brightwell, S. Hemmert, K. Pedretti,
K. Wheeler, K. Underwood, R. Riesen, A. B. Maccabee, and

http://ictf.cs.ucsb.edu/ictfdata/2010/dumps/
http://memcached.org/

T. Hudson. The Portals 4.0.1 Network Programming Inter-
face. Sandia National Laboratories, sand2013-3181 edition,
Apr. 2013.

[5] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis,
and E. Bugnion. IX: A protected dataplane operating system
for high throughput and low latency. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation,
OSDI, 2014.

[6] N. L. Binkert, A. G. Saidi, and S. K. Reinhardt. Integrated net-
work interfaces for high-bandwidth TCP/IP. In 12th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, 2006.

[7] M. Blott, K. Karras, L. Liu, K. A. Vissers, J. Bär, and
Z. István. Achieving 10Gbps line-rate key-value stores with
FPGAs. In 5th USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud, 2013.

[8] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz. Forwarding metamor-
phosis: Fast programmable match-action processing in hard-
ware for SDN. In 2013 ACM Conference on SIGCOMM, SIG-
COMM, 2013.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Vargh-
ese, and D. Walker. P4: Programming protocol-independent
packet processors. SIGCOMM Computer Communication Re-
view, 44(3):87–95, July 2014.

[10] Cavium Corporation. OCTEON II CN68XX multi-core
MIPS64 processors. http://www.cavium.com/pdfFiles/
CN68XX_PB_Rev1.pdf.

[11] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung,
P. Ranganathan, and M. Margala. An FPGA Memcached ap-
pliance. In 21st ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, FPGA, 2013.

[12] S. Di Girolamo, P. Jolivet, K. Underwood, and T. Hoefler.
Exploiting offload enabled network interfaces. In 23rd IEEE
Symposium on High Performance Interconnects, HOTI, 2015.

[13] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro.
FaRM: Fast remote memory. In 11th USENIX Symposium on
Networked Systems Design and Implementation, NSDI, 2014.

[14] P. Druschel and G. Banga. Lazy receiver processing (LRP):
A network subsystem architecture for server systems. In
2nd USENIX Symposium on Operating Systems Design and
Implementation, OSDI, 1996.

[15] P. Druschel, L. Peterson, and B. Davie. Experiences with a
high-speed network adaptor: A software perspective. In 1994
ACM Conference on SIGCOMM, SIGCOMM, 1994.

[16] M. Flajslik and M. Rosenblum. Network interface design
for low latency request-response protocols. In 2013 USENIX
Annual Technical Conference, ATC, 2013.

[17] S. Floyd and E. Kohler. Profile for datagram congestion
control protocol (DCCP) congestion control ID 2: TCP-like
congestion control. RFC 4341, Mar. 2006.

[18] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A
GPU-accelerated software router. In 2010 ACM Conference
on SIGCOMM, SIGCOMM, 2010.

[19] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and
S. Ratnasamy. SoftNIC: A software NIC to aug-
ment hardware. Technical Report UCB/EECS-2015-
155, EECS Department, University of California, Berke-
ley, May 2015. http://www.eecs.berkeley.edu/Pubs/

TechRpts/2015/EECS-2015-155.html.

[20] R. Huggahalli, R. Iyer, and S. Tetrick. Direct cache access for
high bandwidth network I/O. In 32nd Annual International
Symposium on Computer Architecture, ISCA, 2005.

[21] Intel Corporation. Intel data direct I/O technology
(Intel DDIO): A primer, Feb. 2012. Revision 1.0.
http://www.intel.com/content/dam/www/public/

us/en/documents/technology-briefs/data-direct-

i-o-technology-brief.pdf.

[22] Intel Corporation. Flow APIs for hardware offloads.
Open vSwitch Fall Confernce Talk, Nov. 2014. http:

//openvswitch.org/support/ovscon2014/18/1430-

hardware-based-packet-processing.pdf.

[23] Intel Corporation. Intel 82599 10 GbE con-
troller datasheet, Oct. 2015. Revision 3.2. http:

//www.intel.com/content/dam/www/public/us/en/

documents/datasheets/82599-10-gbe-controller-

datasheet.pdf.

[24] K. Jang, S. Han, S. Han, S. Moon, and K. Park. SSLShader:
Cheap SSL acceleration with commodity processors. In 8th
USENIX Symposium on Networked Systems Design and Im-
plementation, NSDI, 2011.

[25] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA
efficiently for key-value services. In 2014 ACM Conference
on SIGCOMM, SIGCOMM, 2014.

[26] S. Kim, S. Huh, X. Zhang, Y. Hu, A. Wated, E. Witchel, and
M. Silberstein. GPUnet: Networking abstractions for GPU
programs. In 11th USENIX Symposium on Operating Systems
Design and Implementation, OSDI, 2014.

[27] E. Kohler, M. Handley, and S. Floyd. Datagram congestion
control protocol (DCCP). RFC 4340, Mar. 2006.

[28] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg,
S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja. Twitter
Heron: Stream processing at scale. In 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD,
2015.

[29] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large
network dataset collection, June 2014. http://snap.

stanford.edu/data.

[30] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA:
A holistic approach to fast in-memory key-value storage. In
11th USENIX Symposium on Networked Systems Design and
Implementation, NSDI, 2014.

[31] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
Enabling innovation in campus networks. SIGCOMM Com-
puter Communication Review, 38(2):69–74, Mar. 2008.

[32] C. Mitchell, Y. Geng, and J. Li. Using one-sided RDMA reads
to build a fast, CPU-efficient key-value store. In 2013 USENIX
Annual Technical Conference, ATC, 2013.

http://www.cavium.com/pdfFiles/CN68XX_PB_Rev1.pdf
http://www.cavium.com/pdfFiles/CN68XX_PB_Rev1.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
http://openvswitch.org/support/ovscon2014/18/1430-hardware-based-packet-processing.pdf
http://openvswitch.org/support/ovscon2014/18/1430-hardware-based-packet-processing.pdf
http://openvswitch.org/support/ovscon2014/18/1430-hardware-based-packet-processing.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://snap.stanford.edu/data
http://snap.stanford.edu/data

[33] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive
livelock in an interrupt-driven kernel. ACM Transactions on
Computer Systems, 15(3):217–252, Aug. 1997.

[34] D. Molka, D. Hackenberg, and R. Schöne. Main memory
and cache performance of Intel Sandy Bridge and AMD Bull-
dozer. In 2014 Workshop on Memory Systems Performance
and Correctness, MSPC, 2014.

[35] Netronome. NFP-6xxx flow processor. https://

netronome.com/product/nfp-6xxx/.

[36] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot.
Scale-out NUMA. In 19th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS, 2014.

[37] PCI-SIG. Atomic operations. PCI-SIG Engineering
Change Notice, Jan. 2008. https://www.pcisig.com/

specifications/pciexpress/specifications/ECN_

Atomic_Ops_080417.pdf.

[38] PCI-SIG. TLP processing hints. PCI-SIG En-
gineering Change Notice, Sept. 2008. https:

//www.pcisig.com/specifications/pciexpress/

specifications/ECN_TPH_11Sept08.pdf.

[39] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishna-
murthy, T. Anderson, and T. Roscoe. Arrakis: The operating
system is the control plane. In 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI, 2014.

[40] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Ra-
jahalme, J. Gross, A. Wang, J. Stringer, P. Shelar, K. Ami-
don, and M. Casado. The design and implementation of Open
vSwitch. In 12th USENIX Symposium on Networked Systems
Design and Implementation, NSDI, 2015.

[41] I. Pratt and K. Fraser. Arsenic: A user-accessible Gigabit
Ethernet interface. In 20th IEEE International Conference on
Computer Communications, INFOCOM, 2001.

[42] RDMA Consortium. Architectural specifications for RDMA
over TCP/IP. http://www.rdmaconsortium.org/.

[43] M. Roesch. Snort - lightweight intrusion detection for net-
works. In 13th USENIX Conference on System Administra-
tion, LISA, 1999.

[44] M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of a log-structured file system. ACM Transactions
on Computer Systems, 10(1):26–52, Feb. 1992.

[45] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and
H. Yang. FPMR: MapReduce framework on FPGA. In
18th ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, FPGA, 2010.

[46] P. Shinde, A. Kaufmann, T. Roscoe, and S. Kaestle. We
need to talk about NICs. In 14th Workshop on Hot Topics
in Operating Systems, HOTOS, 2013.

[47] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead,
R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano,
A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer,
U. Hölzle, S. Stuart, and A. Vahdat. Jupiter rising: A decade
of Clos topologies and centralized control in Googles datacen-
ter network. In 2015 ACM Conference on SIGCOMM, SIG-
COMM, 2015.

[48] W. Sun and R. Ricci. Fast and flexible: Parallel packet pro-
cessing with GPUs and Click. In 9th ACM/IEEE Symposium
on Architectures for Networking and Communications Sys-
tems, ANCS, 2013.

[49] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M.
Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham,
N. Bhagat, S. Mittal, and D. Ryaboy. Storm@Twitter. In 2014
ACM SIGMOD International Conference on Management of
Data, SIGMOD, 2014.

[50] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: a
user-level network interface for parallel and distributed com-
puting. In 15th ACM Symposium on Operating Systems Prin-
ciples, SOSP, 1995.

[51] N. Zilberman, Y. Audzevich, G. Covington, and A. Moore.
NetFPGA SUME: Toward 100 Gbps as research commodity.
IEEE Micro, 34(5):32–41, Sept. 2014.

https://netronome.com/product/nfp-6xxx/
https://netronome.com/product/nfp-6xxx/
https://www.pcisig.com/specifications/pciexpress/specifications/ECN_Atomic_Ops_080417.pdf
https://www.pcisig.com/specifications/pciexpress/specifications/ECN_Atomic_Ops_080417.pdf
https://www.pcisig.com/specifications/pciexpress/specifications/ECN_Atomic_Ops_080417.pdf
https://www.pcisig.com/specifications/pciexpress/specifications/ECN_TPH_11Sept08.pdf
https://www.pcisig.com/specifications/pciexpress/specifications/ECN_TPH_11Sept08.pdf
https://www.pcisig.com/specifications/pciexpress/specifications/ECN_TPH_11Sept08.pdf
http://www.rdmaconsortium.org/

	Introduction
	FlexNIC Design and Implementation
	Motivating Example
	FlexNIC Model
	Building Blocks
	Testbed Implementation

	Case Study: Key-Value Store
	FlexKVS Components
	FlexNIC Implementation
	Performance Evaluation

	Case Study: Real-time Analytics
	FlexNIC Implementation
	Evaluation

	Case Study: Intrusion Detection
	FlexNIC Implementation
	Evaluation

	Other Applications
	Virtualization Support
	Flexible Memory Steering

	Related Work
	Conclusion

