
Approximating Fair Queueing on Reconfigurable Switches

Naveen Kr. Sharma∗ Ming Liu∗ Kishore Atreya† Arvind Krishnamurthy∗

Abstract

Congestion control today is predominantly achieved via
end-to-end mechanisms with little support from the net-
work. As a result, end-hosts must cooperate to achieve
optimal throughput and fairness, leading to inefficiencies
and poor performance isolation. While router mecha-
nisms such as Fair Queuing guarantee fair bandwidth al-
location to all participants and have proven to be optimal
in some respects, they require complex flow classifica-
tion, buffer allocation, and scheduling on a per-packet
basis. These factors make them expensive to implement
in high-speed switches.

In this paper, we use emerging reconfigurable switches
to develop an approximate form of Fair Queueing that
operates at line-rate. We leverage configurable per-
packet processing and the ability to maintain mutable
state inside switches to achieve fair bandwidth alloca-
tion across all traversing flows. Further, present our
design for a new dequeuing scheduler, called Rotating
Strict Priority scheduler that lets us transmit packets from
multiple queues in approximate sorted order. Our hard-
ware emulation and software simulations on a large leaf-
spine topology show that our scheme closely approxi-
mates ideal Fair Queueing, improving the average flow
completion times for short flows by 2-4x and 99th tail
latency by 4-8x relative to TCP and DCTCP.

1 Introduction
Most current congestion control schemes rely on end-
to-end mechanisms with little support from the net-
work (e.g., ECN, RED). While this approach simplifies
switches and lets them operate at very high speeds, it
requires end-hosts to cooperate to achieve fair network
sharing, thereby leading to inefficiencies and poor per-
formance isolation. On the other hand, if the switches
were capable of maintaining per-flow state, extracting
rich telemetry from the network, and performing con-
figurable per-packet processing, one can realize intelli-
gent congestion control mechanisms that take advantage
of dynamic network state directly inside the network and
improve network performance.

One such mechanism is Fair Queueing, which has
been studied extensively and shown to be optimal in sev-
eral aspects. It provides the illusion that every flow (or
participant) has its own queue and receives a fair share

∗University of Washington
†Cavium Inc.

of the bandwidth under all circumstances, regardless of
other network traffic. Having the network enforce fair
bandwidth allocation offers several benefits. It simplifies
congestion control at the end-hosts, removing the need
to perform slow-start or complex congestion avoidance
strategies. Further, flows can ramp up quickly without
affecting other network traffic. It also provides strong
isolation among competing flows, protects well-behaved
flows from ill-behaving traffic, and enables bounded de-
lay guarantees [34].

A fair bandwidth allocation scheme is potentially well
suited to today’s datacenter environment, where mul-
tiple applications with diverse network demands often
co-exist. Some applications require low latency, while
others need sustained throughput. Datacenter networks
must also contend with challenging traffic patterns – such
as large incasts or fan-in, micro-bursts, and synchronized
flows, – which can all be managed effectively using a fair
queueing mechanism. Fair queueing mechanisms can
also provide bandwidth guarantees for multiple tenants
of a shared cloud infrastructure [35].

Over the years, several algorithms for enforcing fair
bandwidth allocation have been proposed [25, 27, 28,
33], but rarely deployed in practice, primarily due to their
inherent complexities. These algorithms maintain state
and perform operations on a per-flow basis, making them
challenging to implement at data rates of 3-6 Tbps in
hardware. However, recent advances in switching hard-
ware allow flexible per-packet processing and the abil-
ity to maintain limited mutable state at switches without
sacrificing performance [12, 6]. In this paper, we explore
whether an efficient fair queueing implementation can be
realized using these emerging reconfigurable switches.

We present Approximate Fair Queueing (AFQ), a fair
bandwidth allocation mechanism that approximates the
various components of an ideal fair queueing scheme
using features available in emerging programmable
switches, such as the ability to maintain and mutate
switch state on a per-packet basis, perform limited com-
putation for each packet, and dynamically determine
which egress queue to use for a given packet. We de-
scribe a variant of the packet-pair flow control proto-
col [24], designed to work with AFQ, that achieves close
to optimal performance while maintaining short queues.
We further prototype an AFQ implementation on a Cav-
ium networking processor and study its feasibility on
upcoming reconfigurable switches. Using a real hard-
ware testbed and large-scale simulations, we demon-

123456789

346

123456789

346 5

6

3

4

6

5

4

123456789

346 5

6

5

8

8

ideal
per-flow
queues

sorted packet buffer

T = 0 T = 1 T = 2

Figure 1: An example of the bit-by-bit round robin Fair Queueing algorithm. The algorithm buffers all packets in sorted order based on their
departure round. When a blue packet D of size 2 arrives at T = 1, its departure round is calculated as 5 and is placed between packets A and C in the
sorted buffer. Similarly, when a green packet of size 4 arrives at T = 2, its departure round is 8, and it is placed at the end of the departure queue.

strate AFQ’s utility, showing it achieves fair bandwidth
allocation for common datacenter workloads and traffic
patterns, significantly improving performance over exist-
ing schemes. Specifically, AFQ reduces the average flow
completion time of common workloads by 2-4x com-
pared to TCP and DCTCP, and 99th percentile tail latency
for short flows by up to 5-10x. We measure its overhead
programmable switches by implementing AFQ in the P4
language and compiling it to a realistic hardware model,
demonstrating that the resource overhead is modest.

2 Background
The idea of enforcing fair bandwidth allocation inside
the network has been well studied and shown to offer
several desirable properties. A straight-forward way of
achieving such allocation is to have per-flow queues,
as proposed by Nagle [31], serviced in a round robin
manner. This is clearly impractical given today’s net-
work speeds and workload complexities. An efficient
algorithm, called bit-by-bit round robin (BR), proposed
in [18], achieves ideal fair queueing behavior without re-
quiring expensive per-flow queues. We describe this ap-
proach next since it forms the basis of our AFQ mecha-
nism. We then provide background on the reconfigurable
switch architecture.

2.1 Bit-by-Bit Round Robin (BR)

The bit-by-bit round robin algorithm achieves per-flow
fair queueing using a round robin scheme wherein each
active flow transmits a single bit of data every round.
Then, the round ends, and the round number is incre-
mented by one. Since it is impractical to build such a sys-
tem, the BR algorithm “simulates" this scheme at packet
granularity using the following steps.

• For every packet, the switch computes a bid number
that estimates the time (round) when the packet would
have departed.

• All packets are then buffered in a sorted priority queue
based on their bid numbers, which allows dequeuing
and transmission of the packet with the lowest bid
number at any time.

Figure 1 shows a simple example of this approach. Al-
though the BR algorithm achieves ideal fair queuing be-
havior, several factors make it challenging to implement
given today’s line-rate, 3-6 Tbps switches. First, to com-
pute bid numbers for each packet, the switch must main-
tain the finish round number for each active flow. This
is equal to the round when the flow’s last byte will be
transmitted and must be updated after each packet’s ar-
rival. Today’s switches carry hundreds to thousands of
concurrent flows [7, 37]. Their limited amounts of state-
ful memory makes it difficult to store and update per-flow
bid numbers. Second, inserting packets into an ordered
queue is an expensive O(logN) operation, where N is
the maximum buffer size in number of packets. Given the
12-20MB packet buffers available in today’s switches,
this operation is challenging to implement at a line-rate
of billions of packets per second. Finally, switches need
to store and update the current round number periodi-
cally using non-trivial computation involving: (1) time
elapsed since last update, (2) number of active flows,
and (3) link speed, as described in [25]. Today’s line-
rate switches lack the capability to perform such complex
computations on a per-packet basis.

As noted, emerging reconfigurable switches allow
flexible packet processing and the ability to maintain lim-
ited switch state, therefore we explore whether we can
implement fair-queuing on these new line-rate switches.
Further, recent work [38] has shown approximation to
be a useful tool for implementing a broad class of in-
network protocols for congestion control, load balancing,
QoS and fairness.

2.2 Reconfigurable Switches

Reconfigurable switches provide a match+action (M+A)
processing model: match on arbitrary packet header
fields and then perform simple packet processing ac-
tions. In our work, we assume an abstract Reconfigurable
Match Table (RMT) switch model, as described in [8, 9]
and depicted in Figure 2. A reconfigurable switch begins
packet processing by extracting relevant packet headers
via a user-defined parse graph. The extracted header
fields and packet metadata are passed onto a pipeline of

Figure 2: The architecture of a reconfigurable switch. Packets are pro-
cessed by a pipeline of match+action stages with local state.

user-defined M+A tables. Each table matches on a sub-
set of extracted headers and can apply simple process-
ing primitives to any field. After traversing the pipeline
stages, packets are deposited in one of multiple queues
associated with the egress port for future transmission.
The parser and the M+A pipeline can be configured us-
ing a high-level language, such as P4 [8] or PoF [43].

A reconfigurable switch provides several hardware
features to support packet processing on the data path:
(1) a limited amount of stateful memory, such as coun-
ters, meters, and registers, which can be accessed and
updated to maintain state across packets, and (2) com-
putation primitives, such as addition, bit-shifts, hashing,
and max/min, which can perform a limited amount of
processing on header fields and data retrieved from state-
ful memory. Further, switch metadata, such as queue
lengths, congestion status, and bytes transmitted, can
also be used in packet processing. Crucially, the pipeline
stages can determine which transmit queue to use for a
given packet based on packet header content and local
state. Finally, a switch-local control plane CPU can also
perform periodic bookkeeping tasks. Several such re-
configurable switches, – Cavium XPliant [12], Barefoot
Tofino [6] and Intel Flexpipe [32] – are available today.

3 Approximate Fair Queueing
Any fair queuing router must perform per-flow man-
agement tasks to guarantee fair bandwidth allocation.
These tasks include packet classification – which flow
this packet belongs to, buffer allocation – whether this
flow’s packet should be enqueued or dropped, and packet
scheduling – decide which flow’s packet to transmit next.
The key idea behind AFQ is to approximate the vari-
ous components of a fair queueing scheme using features
available in programmable switches.

Our design goals for AFQ include achieving per-flow
max-min fairness [20], where a flow is defined as a
unique 5-tuple. Our design should be implementable in
high-speed routers running at line-rate. It must also be
able to handle several thousand flows with varying packet
sizes. We next provide an overview of our design.

3.1 Design Overview

Our design emulates the ideal BR algorithm described
earlier. Like that algorithm, AFQ proceeds in a round
robin manner, where every flow transmits a fixed num-
ber of bytes in each round. On arrival, each packet is
assigned a departure round number based on how many

bytes the flow has sent in the past, and packets are sched-
uled to be transmitted in increasing round numbers. Im-
plementing this scheme requires AFQ to store the fin-
ish round number for every active flow at the switch and
schedule buffered packets in a sorted order. It must also
store and update the current round number periodically
at the switch.

We approximate fair queueing using three key ideas.
First, we store approximate flow bid numbers in sub-
linear space using a variant of the count-min sketch, let-
ting AFQ maintain state for a large number of flows
with limited switch memory. This is made feasible by
the availability of read-write registers on the datapath
of reconfigurable switches. Second, AFQ uses coarser
grain rounds that are incremented only after all active
flows have transmitted a configurable number of bytes
through an output port. Third, AFQ schedules pack-
ets to depart in an approximately sorted manner using
multiple FIFO queues available at each port on these
reconfigurable switches. Combining these techniques
yields schedules that approximate those produced by a
fair queueing switch. However, we show that AFQ pro-
vides performance that is comparable to fair queueing for
today’s datacenter workloads despite these approxima-
tions. Figure 3 shows the pseudocode describing AFQ’s
main components, which we explain in more detail in the
next three sections.

3.2 Storing Approximate Bid Numbers

A flow’s bid number in the BR algorithm is its finish-
round number, which estimates when the flow’s last en-
queued byte will depart from the switch. The bid number
of a flow’s packet is a function of both the current ac-
tive round number as well as the bid number associated
with the flow’s previous packet, and it is used to deter-
mine the packet’s transmission order. AFQ stores each
active flow’s bid number in a count-min sketch-like data-
structure to reduce the stateful memory footprint on the
switch since such memory is a limited resource.

A count-min sketch is simply a 2D array of coun-
ters that supports two operations: (a) inc(e,n), which
increments the counter for element e by n, and (b)
read(e), which returns the counter for element e. For a
sketch with r rows and c columns, inc(e,n) applies
r independent hash functions to e to locate a cell in
each row and increments the cell by n. The operation
read(e) applies the same r hash functions to locate the
same r cells and returns the minimum among them. The
approximate counter value always exceeds or equals the
exact value, letting us store flow bid numbers efficiently
in sub-linear space. Theoretically, to get an ε approxima-
tion, – i.e., error < ε×K with probability 1− δ, where
K is the number of increments to the sketch, – we need
c = e/ε and r = log(1/δ) [17].

/* AFQ parameters */

S[][] : sketch for bid numbers
nH : # of hashes in sketch
nB : # of buckets in sketch
nQ : # of FIFO queues
BpR : bytes sent in each round

/* Count-min sketch functions */
func read_sketch(pkt):

val = INT_MAX
for i = 1 to nH:

h = hash_i(pkt) % nB
val = min(S[i][h], val)

return val

func update_sketch(pkt, val):
for i = 1 to nH:

h = hash_i(pkt) % nB
S[i][h] = max(S[i][h], val)

/* Enqueue Module */

R : Current round (shared w/ dequeue)

On packet arrival:
bid = read_sketch(pkt)

// If flow hasn’t sent in a while,
// bump it’s round to current round.
bid = max(bid, R * BpR)

bid = bid + pkt.size
pkt_round = bid / BpR

// If round too far ahead, drop pkt.
if (pkt_round - R) > nQ:

drop(pkt)
else:

enqueue(pkt_round % nQ, pkt)
update_sketch(pkt, bid)

/* Dequeue Module */

R : Current round number (shared)
i : Current queue being serviced

while True:
// If no packets to send, spin.
if buffer.empty()

continue;

// Drain i’th queue till empty.
while !queue[i].empty():

pkt = dequeue(i)
send(pkt)

// Move onto next queue,
// increment round number.
i = (i + 1) % nQ
R = R + 1

Figure 3: Pseudocode for AFQ

1234

3

1

2

ideal
per-flow
queues

AFQ
buffering

1

2

3

4

1234

3

1

2

1

2

3

4

1234

3

2

2

1

2

3

4

A

B

C

D

E

FG

ABCD

EF

G

A

B

C

D

E

FG A

B

C

D

E

FG

ABCD

EF

G

ABCD

EF

G

H

H

HI

H

I

T = 0 T = 1 T = 2

Figure 4: An example of the AFQ enqueue mechanism. As packets arrive, their bid numbers are estimated, and they are placed in an available
FIFO queues. When a blue packet H arrives at T = 1, its bid number falls within round 1 and is placed in the first FIFO queue servicing round 1.
When a subsequent blue packet I arrives at T = 2, its bid number falls in round 2; hence, it is placed is the second FIFO queue. For both packets H
and I, we can see the approximation effects of using a large quantum of bytes per round and FIFO queues. An ideal FQ scheme using BR would
transmit packet H before packets C and D, and packet I before E and F, as their last bytes are enqueued before the other packets in the per-flow
queue. However, this reordering is upper-bounded by the number of active flows multiplied by the round quantum.

In hardware, a sketch is realized using a simple incre-
ment by x primitive and predicated read-write registers
(as described in [40]), both of which are available in re-
configurable switches. On packet arrival, r hashes of the
flow’s 5-tuple are computed to index into the register ar-
rays and estimate the flow’s finish round number, which
is used to determine the packet’s transmission schedule.
In practice, AFQ re-uses one of several hashes that are al-
ready computed by the switch for Link Aggregation and
ECMP. Today’s devices support up to 64K register en-
tries per stage and 12-16 stages [22], which is sufficient
for a reasonably sized sketch per port to achieve good
approximation, as we show in Appendix E.

3.3 Buffering Packets in Approximate Sorted Order

The BR fair queuing algorithm ensures that the packet
with the lowest bid number is transmitted next at any
point of time using a sorted queue. Since maintaining
such a sorted queue is expensive, AFQ instead leverages
the multiple FIFO queues available per port to approx-
imate ordered departure of buffered packets, similar to
timer wheels [46].

Assume there are N FIFO queues available at each
egress port of the switch. AFQ uses each queue to buffer
packets scheduled to depart within the next N rounds,
where in each round, every active flow can send a fixed
number of bytes, i.e., BpR bytes (bytes per round). We
next describe how packets are enqueued and dequeued
in approximate sorted order using these multiple queues.

3.3.1 Enqueue Module

The enqueue module decides which FIFO queue to as-
sign to each packet. On arrival, the module retrieves the
bid number associated with the flow’s previous packet
from the sketch. If it is lower than the starting bid number
for the current round, the bid is pushed up to match the
current round. The packet’s bid number is then obtained
by adding the packet’s size to the previous bid number,
and the packet’s departure round number is computed as
the packet’s bid number divided by BpR. If this depar-
ture round exceeds N rounds in the future, the packet
is dropped, else it is enqueued in the queue correspond-
ing to the computed round number. Note that the current
round number is a shared variable that the dequeue mod-

123

3

1

2

ideal
per-flow
queues

AFQ
buffering

1

2

3

4

A

B

C

D

E

FG

ABCD

EF

G

 Dequeue

current round

23

3

1

2

5

2

3

4

E

FG

EF

G

current round

Figure 5: An example of the AFQ dequeue mechanism.

ule updates after it finishes draining a queue. Finally,
the enqueue module updates the sketch to reflect the bid
number computed for the current packet. Figure 4 shows
an example of how AFQ works when various flows with
variable packet sizes arrive at the same egress port.

Clearly, having more FIFO queues leads to finer order-
ing granularity and a better approximation of fair queu-
ing. Switches available today support 24-32 queues per
port [9, 12], which we show is sufficient for datacenter
workloads. AFQ assumes that the total buffer assigned to
each port can be dynamically assigned to any queue as-
sociated with that port. This lets AFQ to absorb a burst of
new flow arrivals when several packets are scheduled for
the same round number. Most switches already imple-
ment this functionality via dynamic buffer sharing [16].

3.3.2 Dequeue Module

The dequeue module transmits the packet with the small-
est departure round number. Since the enqueue module
already stores packets belonging to a given round number
in a separate queue, AFQ must only drain the queue with
the smallest round number. This is achieved by arrang-
ing all queues in strict priority, with the queue having
the lowest round number assigned the highest priority.
However, once empty, the queue must be bumped down
to the lowest priority and the current round number incre-
mented by 1. Note that this round number is shared with
the enqueue module, which can then adjust its queueing
behavior. The just-emptied queue is then used to store
packets belonging to a future round number that is N
higher than the current round number. Figure 5 shows the
priority change and round assignment that occurs when
a queue is drained to empty by a Rotating Strict Priority
(RSP) scheduler. We describe in Section 4 how to imple-
ment this scheduler on reconfigurable switches.

An important implication of this design is that up-
dating the current round number becomes trivial – in-
crement by 1 whenever the current queue drains com-
pletely. Unlike the BR fair queuing algorithm, which
must update the round number on every packet arrival,
this coarse increment does not involve any complex com-
putations or extra packet state, making it much more fea-
sible to implement on reconfigurable switches.

3.4 Discussion

Several approximations govern how closely the AFQ de-
sign can emulate ideal fair queueing and present a fair-
ness versus efficiency trade-off.

Impact of approximations: First, using a count-min
sketch means that AFQ can over-estimate a packet’s bid
number in case of collisions. As the number of active
flows grows beyond the size of the sketch, the probability
of collisions increases, causing packets to be scheduled
later than expected. However, as we show in the Ap-
pendix E, the sketch must be sufficiently large to store
state only for active flows that have a packet enqueued at
the switch, not all flows traversing the switch, including
dormant ones that have not transmitted recently.

Second, unlike the BR fair queueing algorithm, which
transmits one bit from each flow per round, AFQ lets
active flows send multiple bytes per round. Since this
departure round number is coarser than the bid number
and AFQ buffers packets with the same round number in
FIFO order, packets with higher bid numbers might be
transmitted before packets with lower bid numbers if the
switch received them earlier. This reordering can lead to
unfairness within the round, but is bounded by number
of active flows times BpR in the worst case.

BpR trade-off: Since AFQ buffers packets for the next
N rounds only, the BpR must be chosen carefully to bal-
ance fairness and efficient use of the switch buffer. If
BpR is too large, a single flow can occupy a large portion
of the buffer, causing unfair packet delays and drops. If
it is too small, AFQ will drop packets from a single flow
burst despite having sufficient space to buffer them. The
choice of BpR depends on network parameters, such as
round trip times and link speeds, switch parameters, such
as number of FIFO queues per port and total amount of
packet buffer, as well as the endhost flow control pro-
tocol. We discuss how to set the BpR parameter after
we describe the end-host transport protocol, which pre-
scribe the rate adaptation mechanisms and determine the
desired queue buildups on the switch.

4 Rotating Strict Priority (RSP) Scheduler
Given the Figure 3 pseudocode, implementing the de-
queue module appears to be trivial. However, some hard-
ware constraints make it more challenging than it seems.
First, the two modules are generally implemented as sep-
arate blocks in hardware, which drives considerations re-
garding the sharing of state and synchronization issues
between them. This is important since the decision of
which queue to insert the packet into, or whether to drop
the packet altogether, depends on the current round num-
ber. Second, the RSP scheduler, a custom mechanism,
requires a queue’s priority to be adjusted with respect
to all other queues after it is completely drained by the

dequeue module. This mechanism is currently not sup-
ported, so we explore multiple ways to implement the
RSP scheduler on today’s hardware.

Synchronizing the enqueue and dequeue modules.
Our design requires the current round number to be
shared and synchronized between the two modules. The
RMT architecture outlined in [9] does not permit the
sharing of state across pipelines stages or pipelines
due to performance considerations, but other reconfig-
urable switches that support the disaggregated RMT
model [15, 12] do not impose this constraint. However,
a workaround on the RMT architecture is possible if we
make the following modifications to the enqueue mod-
ule. Instead of explicitly receiving a signal regarding
round completion (through the increment of the round
number), the enqueue model can maintain a local esti-
mate of the round number and infer round completion by
obtaining queue metadata regarding its occupancy.

An empty queue corresponding to a given round num-
ber implies that the queue has been completely drained,
and the enqueue module then locally increments its es-
timate of the round number and tries adding the packet
to the next queue. Eventually, the enqueue module will
identify a queue that is either not empty or that corre-
sponds to a round number that it has not previously as-
signed to any incoming packet; it then assigns the packet
to this queue. Note that we have replaced explicit signal-
ing by providing access to queue occupancy data, which
is supported on reconfigurable switches such as Bare-
foot’s Tofino and Cavium Xpliant, at least at a coarse-
grain level (i.e., pipeline stages have access to a coarse-
grain occupancy level for each queue, if not the exact
number of bytes enqueued).

Emulating RSP using a generic DRR scheduler.
Deficit Round Robin (DRR) is a scheduling algorithm
that guarantees isolation and fairness across all queues
serviced. It proceeds in rounds; in each round it scans all
non-empty queues in sequence and transmits up to a con-
figurable quantum of bytes from each queue. Any deficit
carries over to the next round unless the queue is empty,
in which case the deficit is set to zero. We note that RSP
is simply a version of DRR with the quantum set to a
large value that is an upper-bound on the number of bytes
transmitted by flows in a round. With a very high quan-
tum, a queue serviced in DRR is never serviced again
until all other queues have been serviced. This is equiva-
lent to demoting the currently serviced queue to the low-
est priority. Crucially, the DRR emulation approach in-
dicates that the hardware costs of realizing RSP should
be minimal since we can emulate its functionality using
a mechanism that has been implemented on switches.
However, we note that many modern switches imple-
ment a more advanced version of DRR, called Shaped

DWRR, a variant that performs round robin scheduling
of packets from queues with non-zero deficit counters in
order to avoid long delays and unfairness. Unfortunately,
the RSP mechanism cannot be emulated directly using
DWRR due to its use of round robin scheduling across
active queues.

Emulating RSP using strict priority queues. We now
consider another emulation strategy that uses periodic
involvement of the switch-local control plane CPU to
alter the priority levels of the available egress queues.
When the priority level for a queue is changed, typically
through a PCIe write operation, the switch hardware in-
stantaneously uses the queue’s new priority level to de-
termine packet schedules. The challenge here is that the
switch CPU cannot make repeated updates to the priority
levels given its clock speed and the PCIe throughput. We
therefore designed a mechanism that requires less fre-
quent updates to the priority levels (e.g., two PCIe oper-
ations every 10us) using hierarchical schedulers.

Our emulation approach splits the FIFO queues into
two strict priority groups and defines hierarchical prior-
ity over the two groups. All priority level updates are
made by switching the upper-level priority of the two sets
of queues; these updates are made only after the system
processes a certain number of rounds. Suppose we have
2×n queues, split into two groups (G1, G2) of n queues
each. In each group, all n queues are serviced using strict
priority. Initially, G1 has strict priority over G2. Pack-
ets with round number 1 → n are enqueued in G1

1→n,
whereas packets with round (n+ 1)→ 2n are enqueued
in G2

1→n. Packets with a round number greater than that
are dropped. After a period τ , or when all queues in G1

are empty, we switch the priorities of G1 and G2, mak-
ing all queues of G2 higher priority than G1. Queues in
each group retain their strict priority ordering. After the
switch, we allow packets to be enqueue on G1’s queues
for rounds corresponding to (2n+ 1)→ 3n.

This approach is feasible using hierarchical sched-
ulers available in most ToR switches today. It reduces
the number of priority transitions the switch must make
and is implementable with the help of the manage-
ment/service CPU on the switch. The time period τ
depends on the link-rate and number of queues. Our
experiments with the Cavium Xpliant switch indicate
that τ = 10µs is both sufficient and supportable us-
ing the switch CPU. The disadvantage of this emulation
approach is that the number of active queues the sys-
tem can use could drop from 2n to n at certain points
in time. However, our evaluations show that AFQ can
perform reasonably well even with a small number of
queues (viz., 8 queues for 40 Gbps links).

5 End-host Flow Control Protocol
Although AFQ is solely a switch-based mechanism
that can be deployed without modifying existing end-
hosts to achieve significant performance improvement,
a network-enforced fair queuing mechanism lets us op-
timize the end-host flow control protocol to extract even
more gains. This section describes our approach, adapted
from literature, for performing fast ramp ups and keep-
ing queue sizes small at switches. If all network switches
provided fair allocation of bandwidth, the bottleneck
bandwidth could be measured using the packet-pair ap-
proach [26], which sends a pair of packets back-to-back
and measures the inter-arrival gap.

Packet-pair flow control. We briefly describe the
packet-pair flow control algorithm. At startup, two pack-
ets are sent back-to-back at line-rate, and the returning
ACK separation is measured to get an initial estimate
of the channel RTT and bottleneck bandwidth. Nor-
mal transmission begins by sending packet-pairs paced
at a rate equal to the estimated bandwidth. For every
packet-pair ACK received during normal transmission,
the bandwidth estimate is updated and the packet send-
ing rate adjusted accordingly. If the bandwidth estimate
decreases, a few transmission cycles are skipped, pro-
portional to the rate decrease, to avoid queue buildup.
Similarly, when the bandwidth estimate increases, a few
packets, again proportional to the rate increase, are in-
jected immediately to maintain high link utilization as
described in [24], which also studies the stability of such
a control-theoretic flow control.

Although this approach works well for an ideal fair-
queuing network, we need to make some modifications
for it to be robust against approximations introduced by
AFQ. The complete pseudocode of our flow control pro-
tocol is available in Appendix A.

Robust bandwidth estimation. Since AFQ transmits
multiple bytes in a single round, the packet-pair approach
can incorrectly estimate bottleneck bandwidth if two
back-to-back packets are enqueued in the same round
and transmitted one after the other. This is not an issue
if the BpR is less than or equal to 1 MSS, where MSS
is the maximum segment size of the packets in the pair,
and it holds true for our testbed and simulations. How-
ever, if the BpR is greater than twice the MSS, we must
ensure that the very first packet-pair associated with a
flow maps onto different rounds to get a reasonable band-
width estimate using the inter-arrival delay. We accom-
plished this by adding a delay of BpR-MSS bytes at line-
rate in between the packet-pairs at the end-host. This
careful spacing mechanism, described in [45] measures
the cross-traffic observed in a short interval and extrap-
olates it to identify the number of flows traversing the
switch at that juncture. The protocol records the packet-

pair arrival gap at the receiver and piggybacks on the ac-
knowledgment to avoid noise and congestion on the re-
verse path. To further reduce variance, the protocol keeps
a running EWMA of bandwidth estimates in the last RTT
and uses the average for pacing packet transmission.

Per-flow ECN marking. Unlike an ideal fair-queueing
mechanism, where the packet with the largest round
number is dropped on buffer overflow, AFQ never drops
packets that have already been enqueued. As a result,
AFQ must maintain short queues to absorb bursty ar-
rival of new flows. To dissipate standing queues and
keep them short, we rely on a DCTCP-like ECN marking
mechanism. Each sender keeps track of the fraction of
marked packets and instead of transmitting packets at the
estimated rate, the protocol sends packets at estimated
rate times (1− α/2). This optimization ensures that any
standing queue is quickly dissipated. Further, unlike sim-
ple drop-tail queues, AFQ lets us perform per-flow ECN
marking, which we exploit by marking packets when the
enqueued bytes for a flow exceed a threshold round num-
ber. We set this number to 8 rounds in our simulations,
which keeps per-flow queues very short without sacrific-
ing throughput.

Bounding burstiness. Finally, since we have a fairly
accurate estimate of the base RTT and the fair-share rate
for each flow, we bound the number of inflight packets to
a small multiple of the available bandwidth delay product
(BDP) – similar to the rate based TCP BBR [10], – cur-
rently set to 1.5x the BDP in our implementation. This
reduces network burstiness, especially when new flows
arrive, by forcing older flows to stop transmitting due to
their reduced BDP. This optimization keeps queues short,
avoiding unnecessary queue buildup and packet drops.

We now perform a simple back of the envelope cal-
culation to determine how to set the BpR parameter. As
noted, we can use any end-host mechanism with AFQ,
including standard ones such as TCP and DCTCP. Prior
work has shown that DCTCP requires a queue of size
roughly 1/6th of the bandwidth delay product for effi-
cient link utilization [3]. If the average round-trip latency
of the datacenter network is d and the peak line rate is l,
then we require d × l/6 amount of buffering for a sin-
gle flow to ensure maximum link utilization. Further, if
we have nQ queues in the system, then we set BpR to
d × l/(6 × nQ). In practice, this is less than a MSS for
a 40 Gbps link, 20 us RTT, and 10-20 queues. Further,
the amount of buffering required by a single flow can
be even lower by using an end-host protocol that lever-
ages packet-pair measurements (such as that described
above). Section 6.2.3 provide empirical data from our ex-
periments to show that our end-host protocol does indeed
maintain lower levels of per-flow buffer buildup than tra-
ditional protocols and that packet drops are rare.

6 Evaluation
We evaluated AFQ’s overall performance, fairness guar-
antees and feasibility using: (1) a hardware prototype
based on a Cavium network processor within a small
cluster, (2) large-scale packet-level simulations, and (3)
a programmable switch implementation in P4.

6.1 Hardware Prototype

Existing reconfigurable switches do not expose the pro-
grammability of internal queues, we therefore built a
prototype of an AFQ switch using a programmable net-
work processor. The Cavium OCTEON platform [14]
has a multi-core MIPS64 processor with on-board mem-
ory and 4x10Gbps network I/O ports alongside sev-
eral hardware-assisted network/application acceleration
units, such as a traffic manager, packet buffer manage-
ment units, and security co-processors. All of these com-
ponents are connected via fast on-chip interconnects pro-
viding high performance, low latency, and programma-
bility for network applications ranging from 100Mbps to
200Gbps.

6.1.1 AFQ Switch Implementation

We built a 4-port AFQ switch on top of the network pro-
cessor using the Cavium Development Kit [13]. Fig-
ure 6 shows the high-level architecture, which includes
4 ingress pipelines, 4 egress pipelines, 32 FIFO packet
queues, and a count-min sketch table containing 4 rows
and 16K columns. The number of ports was fixed due to
hardware limitations while all other individual compo-
nents, such as ingress/egress pipelines, queue and table
sizes were configured based on available resources.

Each ingress and egress pipeline instance runs on a
dedicated core, sharing access to packet buffer queues
and the count-min sketch stored on the on-board DRAM.
The ingress pipeline implements most of the AFQ func-
tionality. First, it parses the packet and computes multi-
ple hashes using on-chip accelerators for indexing into
the count-min sketch. Next, it estimates the current
round number for the packet using the algorithm shown
in Figure 3. Finally it updates the count-min sketch and
enqueues the packet in the queue corresponding to the
estimated round number. The egress simply dequeues
packets from the queue corresponding to the current
round being serviced, re-encapsulates the packets and
transmits them to the specific port based on a pre-loaded
MAC table.

Each packet queue maintains a shared lock to avoid
race conditions arising from concurrent accesses of the
ingress and egress cores. Other queue state updates and
sketch table reads/writes use lock-free operations. We
use the software reference counting technique to avoid
TOCTOU race conditions.

Ingress pipeline

Port 0 Port 1 Port 2 Port 3

Queues

Match Action

* 32 cnMIPS64 cores

Match-action Tables

Egress pipeline

Match Action

Match-action Tables

Count-min sketch

* 2GB DRAM

* 4 X 10Gbps ports

Figure 6: High-level architecture of the AFQ switch prototype.

6.1.2 End-host Protocol Implementation

We implemented the packet-pair flow control protocol
(Section 5) in user-space on top of UDP and integrated it
with our workload generator. The implementation uses
hardware timestamps from the NIC to measure the spac-
ing between packet-pairs to accurately obtain bandwidth
estimate and RTT samples, similar to prior work [30].
The flow control re-implements standard TCP sequenc-
ing, fast retransmit, and recovery in user-space atop UDP.

6.1.3 Hardware Testbed and Workload

Our testbed includes 8 Supermicro servers, 2 Cavium
XPliant switches and the prototype AFQ switch atop
the network processor described above. All servers are
equipped with 2x10Gbps port NICs. We created a 2-
level topology using VLANs to divide the physical ports
on the two switches. We integrated the prototyped AFQ
switch into the aggregation switch which runs the AFQ
mechanism at the second layer of the topology. The end-
to-end latency is approximately 200µs, most of which is
spent inside the network processor.

We set up 4 clients and 4 servers that generated traffic
using the enterprise workload described in [1], such that
all traffic traversed the AFQ switch in the aggregation
layer. Each client opened 25 concurrent long-running
connections to each server, and requested flows accord-
ing to a Poisson process at a rate configured to achieve
desired network load. We compared four schemes,

• Default Linux TCP CUBIC with droptail queues
• DCTCP [2] with ECN marking droptail queues
• DCTCP with our AFQ mechanism
• Our packet-pair flow control with AFQ mechanism

For DCTCP, we enabled the default kernel DCTCP
module and set the ECN marking threshold to K = 65
packets. For a fair comparison, we relayed the TCP and
DCTCP traffic through our emulated switch.

 0

 2

 4

 6

 8

 0 20 40 60 80 100

N
o
rm

a
liz

e
d
 F

C
T

Network Load (%)

(a) Average over all flows

TCP
DCTCP

DCTCP-AFQ
PP-AFQ

 0

 3

 6

 9

 12

 0 20 40 60 80 100

Network Load (%)

(b) 99th percentile for small flows < 100KB

DCTCP
DCTCP-AFQ

PP-AFQ

100

101

102

103

< 3k 12k 48k 192k 768k 3M > 3M

Flow size in bytes

(c) FCT breakdown at 70% network load

TCP
DCTCP
PP-AFQ

Figure 7: FCT summary for the enterprise workload on our hardware testbed. (a) average FCT for all flows, (b) tail latency for short flows, and (c)
average and 99th percentile (using error bar) for various flow sizes. Note, TCP does not appear in (b) as its performance is outside the plotted range.

6.1.4 Overall Performance

We use flow completion time (FCT) as the evaluation
metric and report the average and 99th percentile latency
over a period of 60 seconds. Figure 7 shows FCT statis-
tics for various flow sizes as we increase the network
load; data points are normalized to the average FCT
achieved in an idle network. AFQ improves DCTCP
performance by 2x and TCP performance by 10x for
both average and tail flow completion times. The ben-
efits of AFQ are more visible at high network loads
when there is substantial cross-traffic with high churn. In
such a scenario, TCP and DCTCP take multiple RTTs to
achieve fair bandwidth allocation, and suffer long queue-
ing delays behind bursty traffic; whereas AFQ lets new
flows achieve their fair share immediately and isolates
them from other concurrent flows, leading to signifi-
cantly more predictable performance.

Figure 7(b) also shows the improvement from our
packet-pair end-host flow control over DCTCP, as the
packet-pair approach avoids slow-start and begins trans-
mitting at fair bandwidth allocation immediately after the
first ACK. This fast ramp-up along with fair allocation
at AFQ switches translates to significant FCT improve-
ment, especially for short flows, as shown in Figure 7(c).

6.2 Software Simulation

We also studied AFQ’s performance in a large-scale clus-
ter deployment using an event-driven, packet-level sim-
ulator. We extended the mptcp-htsim simulator [36] to
implement AFQ and several other comparison schemes.

6.2.1 Simulation Topology and Workload

We simulated a cluster of 288 servers connected in a
leaf-spine topology, with 9 leaf and 4 spine switches.
Each leaf switch is connected to 32 servers using 10Gbps
links; and each spine switch is connected to each leaf us-
ing 40Gbps links. All leaf and spine switches have a
fixed-sized buffer of 512KB and 1MB per port respec-
tively. The end-to-end round-trip latency across the spine
(4 hops) is ≈ 10µs. All flows are ECMP load balanced
across all spine switches. We use a small value of min-
RTO = 200µs for all schemes, as suggested in [4].

We used both synthetic and empirical workloads de-
rived from traffic patterns observed in productions dat-
acenters. The synthetic workload generates Pareto dis-
tributed (α = 1.1) flows with mean flow size 30KB.
The empirical workload is based on an enterprise clus-
ter reported in [1]. Flows arrive according to a Poisson
process at randomly and independently chosen source-
destination server pairs from all servers. The arrival rate
is chosen to achieve a desired level of utilization in the
spine links. Both workloads are heavy-tailed with ma-
jority bytes coming from a small fraction of large flows;
both also have a diverse mix of short and long flows, with
the enterprise workload having more short flows.

6.2.2 Comparison Schemes

• TCP: Standard TCP-Reno with fast re-transmit and
recovery, but without SACKs, running on switches
with traditional drop-tail queues

• DCTCP: The DCTCP [2] congestion control algo-
rithm with drop-tail queues supporting ECN marking
on all switches; marking threshold set to 20 packets
for 10Gbps links and 80 packets for 40Gbps links

• SFQ: Same TCP-Reno as above with Stochastic Fair
Queueing [29] using DRR [39] on all switch ports;
with 32 FIFO queues available at each switch port

• AFQ: Our packet-pair flow control with AFQ switches
using 32 FIFO queues per port, a count-min sketch of
size 2x16384, and a BpR of 1 MSS

• Ideal-FQ: An ideal fair queueing router that imple-
ments the BR algorithm (described in [18]) and uses
our packet-pair flow control at the end-host

6.2.3 Overall Performance

We compared the overall performance of various
schemes in the simulated topology by measuring the FCT
of all flows that finished over a period of 10 seconds in
the simulation. Figures 8 and 9 show the normalized
FCT (normalized to the average FCT achieved in an idle
network) for all flows, short flows (<100KB) and flows
bucketed across different sizes at varying network loads
and workloads.

 0

 2

 4

 6

 8

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 F
C

T

Network Load (%)

(a) Average over all flows

TCP
DCTCP

SFQ
AFQ

Ideal-FQ

 0

 4

 8

 12

 16

 0 20 40 60 80 100

Network Load (%)

(b) Average over small flows < 100KB

TCP
DCTCP

SFQ
AFQ

Ideal-FQ

100

101

102

103

< 3k 12k 48k 192k 768k 3M > 3M

Flow size in bytes

(c) FCT breakdown at 70% network load

TCP
DCTCP
PP-AFQ

Figure 8: Flow completion times for synthetic workload in the cluster. (a) average FCT for all flows, (b) average FCT for flows shorter than 100KB,
and (c) average and 99th percentile (using error bar) for various flow size buckets at 70% network load.

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 F
C

T

Network Load (%)

(a) Average over all flows

TCP
DCTCP

SFQ
AFQ

Ideal-FQ

 0

 4

 8

 12

 16

 20

 0 20 40 60 80 100

Network Load (%)

(b) Average over small flows < 100KB

TCP
DCTCP

SFQ
AFQ

Ideal-FQ

100

101

102

103

< 3k 12k 48k 192k 768k 3M > 3M

Flow size in bytes

(c) FCT breakdown at 70% network load

TCP
DCTCP
PP-AFQ

Figure 9: Flow completion times for enterprise workload, with each graph showing the same metrics as in Figure 8.

Our simulation results match previous emulated ob-
servations. As expected, most schemes perform close
to optimal at low network load, but quickly diverge as
network traffic increases. Traditional TCP keeps switch
buffers full, leading to long queueing delays, especially
for shorter flows. DCTCP improves the performance
of short flows significantly since it maintains shorter
queues, but is still a factor of 2-4x away from ideal
fair-queuing behavior. SFQ works very well at low net-
work loads when the number of active flows is compa-
rable to number of queues, however as network traffic
increases, collisions within a single queue become more
frequent leading to poor performance. AFQ achieves
close to ideal fair queuing performance for all network
load, which is 3-5x better that TCP and DCTCP for tail
latency of short flows: irrespective of other network traf-
fic, all flows immediately get their fair share of the net-
work without waiting behind other packets. This leads to
significant performance benefit for shorter flows, which
do not have to wait behind bursty traffic.

To further understand the performance gains, we mea-
sured several other metrics, such as packet drops, re-
transmissions, average queue lengths, and buffer occu-
pancy distribution during the experiment. Figure 10(a)
shows the average bytes dropped per flow for each
scheme. As expected, standard TCP drops on average
one packet per flow, and DCTCP has negligible drops at
low network load. However, at higher loads, drops are
more frequent, leading to occasional re-transmission and
performance penalty. This is also reflected in the aver-

age queue length shown in Figure 10(b). Both DCTCP
and packet pair with AFQ are able to maintain very short
queues, but with an interesting difference in the buffer
occupancy distribution as shown in Figure 10(c). We
took periodic snapshots on the queue every 100µs, to
count how many packets belong to each flow in the buffer
and plotted the CCDF of number of packets per flow
across all snapshots. AFQ with packet-pair flow con-
trol rarely has more than 5 packets enqueued per flow
at the core links, whereas DCTCP and TCP have many
more packets buffered per flow. This can lead to unfair-
ness when bursty traffic arrives, such as during an incast,
which we discuss next. In summary, AFQ achieves simi-
lar performance to DCTCP for all flows, and 2x better
performance for short flows while maintaining shorter
queues and suffering fewer drops by ensuring fair allo-
cation of bandwidth and buffers.

6.2.4 Incast Patterns

Incast patterns, common in datacenters, often suffer per-
formance degradation due to poor isolation. In this setup,
we started a client on every end-host which requests a
chunk of data distributed over N other servers. Each
sender replies back with 1/N of the data at the same
time. We report the total transfer time of the chunk of
data with a varying number of senders averaged over
multiple runs. Simultaneous multiple senders can cause
unfair packet drops for flow arriving later, causing time-
outs that delay some flows and increase overall comple-
tion time. An ideal fair-queuing scheme would allocate

10-1

100

101

102

103

104

105

 0 20 40 60 80 100

A
v
e
ra

g
e
 d

ro
p

p
e
d

 b
y
te

s
p

e
r
fl
o
w

Network Load (%)

(a) Packet Drops

TCP
DCTCP
PP-AFQ

Ideal-FQ

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

A
v
e
ra

g
e
 Q

u
e
u
e
 S

iz
e
 i
n
 k

ilo
-b

y
te

s

Network Load (%)

(b) Core Link Queue Size

TCP
DCTCP

AFQ
Ideal-FQ

10-4

10-3

10-2

10-1

100

 0 5 10 15 20 25 30

C
C

D
F

P
[X

 >
=

 x
]

Number of packets per flow

(c) Core Link Buffer Distribution at 80% load

Ideal-FQ
PP-AFQ
DCTCP

TCP

Figure 10: Packet drops, queue lengths and buffer occupancy distribution for enterprise workload in the cluster.

 0

 1

 2

 3

 10 30 50 70 90

N
o
m

a
liz

e
d
 I
n
ca

st
 L

a
te

n
cy

Number of Senders

(a) Average Completion Time

TCP
DCTCP

AFQ
Ideal-FQ

 0

 2

 4

 6

 8

 10

 10 30 50 70 90

Number of Senders

(b) 99%tile Completion Time

TCP
DCTCP

AFQ
Ideal-FQ

 0

 1

 2

 3

 10 30 50 70 90

Number of Senders

(c) Unfairness (diff b/w 1% and 99% FCT over all flows)

TCP
DCTCP

AFQ
Ideal-FQ

Figure 11: Completion time summary for an incast request of size 1.5MB from a varying number of senders.

equal bandwidth and buffer to each sender, hence finish-
ing all transfers at roughly the same time.

Figure 11 shows the total completion time of vari-
ous schemes for a total chunk size 1.5MB with vary-
ing number of senders. The receiver link has approx-
imately 300KB of buffer, roughly around 200 packets.
Most schemes perform well with few senders, but de-
grade when the number of senders overwhelms the re-
ceiver link buffer. This leads to packet drops for flows ar-
riving later in a traditional droptail queue, sending them
into timeouts. AFQ achieves close to optimal request
completion time, even with large senders because it en-
sures each flow gets fair buffer allocation regardless of
when it arrives. As a result packet drop are minimal,
leading to fewer re-transmissions and lower completion
time. Figure 12 shows the number of packet drops ob-
served during the incast, packet re-transmissions, and
buffer occupancy, which confirm the preceding observa-
tion. As expected, TCP drops several packets throughout
the incast experiment, causing several re-transmissions.
DCTCP performs much better and suffers zero packet
drops until the number of senders exceeds the link buffer
capacity. AFQ has even fewer drops than DCTCP be-
cause it distributes the available buffer space in a fair
manner among all flows, as shown in Figure 12(c).

6.3 P4 Implementation

To evaluate the overhead of implementing AFQ on an
actual reconfigurable switch, we expressed AFQ in the
P4 programming language and compiled it to a produc-
tion switch target. The P4 code ran on top of a base-

line switch implementation [41] that provides common
functionality of today’s datacenter switches, such as ba-
sic L2 switching (flooding, learning, and STP), basic L3
routing (IPv4, IPv6, and VRF), link aggregation groups
(LAGs), ECMP routing, VXLAN, NVGRE, Geneve and
GRE tunneling, and basic statistics collection. The com-
piler implements the functionality proposed in [23] and
compiles to the hardware model described in Section 2.2.
It reports the hardware usage of various resources for the
entire implementation.

Resource Baseline +AFQ +AFQ-Large

Pkt Header Vector 187 191 +2% 191 +2%
Pipeline Stages 9 12 +33% 12 +33%
Match Crossbar 462 465 +1% 465 +1%
Hash Bits 1050 1082 +3% 1092 +4%
SRAM 165 178 +8% 190 +15%
TCAM 43 44 +2% 44 +2%
ALU Instruction 83 90 +8% 90 +8%

Table 1: Summary of resource usage for AFQ.

Table 1 shows the additional overhead of implement-
ing two variants of AFQ as reported by the compiler.
AFQ uses a count-min sketch of size 2x2048, while
AFQ-Large uses a sketch of size 3x16384. We can see
the extra overhead is small for most resources. We need
more pipeline stages to traverse the count-min sketch and
keep a running minimum, and more SRAM to store all
the flow counters. We also use extra ALU units to per-
form per-packet increments and bit-shifts to divide by
BpR.

10-1

100

101

102

103

104

 10 30 50 70 90

A
v
e
ra

g
e
 b

y
te

s
d

ro
p

p
e
d

 p
e
r
fl
o
w

Number of Senders

(a) Packet Drops

TCP
DCTCP
PP-AFQ

Ideal-FQ
10-1

100

101

102

103

 10 30 50 70 90

A
v
e
ra

g
e
 r

e
tr

a
n
sm

is
si

o
n
s

p
e
r

in
ca

st

Number of Senders

(b) Packet Retransmissions

TCP
DCTCP
PP-AFQ

Ideal-FQ
10-3

10-2

10-1

100

 0 1 2 3 4 5 6 7 8 9 10

C
C

D
F

P
[X

 >
=

 x
]

Number of packets per flow

(c) Buffer Distribution with 80 senders

TCP
DCTCP
PP-AFQ

Ideal-FQ

Figure 12: Packet drops, re-transmissions and buffer distribution across flows during incast traffic.

7 Related Work
Starting from Nagle’s proposal [31] for providing fair-
ness by using separate queues, several algorithms have
been designed to implement a fair queueing mechanism
inside the network. In [18], an efficient bit-by-bit round
robin (BR) algorithm was developed to provide ideal fair
queuing without per-flow queue support; [25] describes
an efficient implementation of the BR algorithm. How-
ever, its inherent complexities make it hard to implement
on today’s high-speed routers.

Many algorithms were later proposed to reduce the
complexity and cost of implementing fair queuing mech-
anisms. Most either use stochastic approaches or avoid
complex per-flow management by using simpler heuris-
tics. Stochastic Fair Queuing (SFQ) [29] hashes flows
onto a reduced set of FIFO queues and perturbs the hash-
ing function periodically to minimize unfairness. An
efficient realization of SFQ using Deficit Round Robin
(DRR) was proposed in [39]. However, its fairness guar-
antees are closely tied to the number of queues, and per-
formance degrades significantly when the number of ac-
tive flow exceeds the number of queues.

Several schemes [33, 28, 27] enforce fairness by drop-
ping packets of flows sending faster than their fair share.
They estimate flow rate by tracking recent history of
packet arrivals or the current buffer occupancy. A vari-
ant, called Stochastic Fair Blue [19], uses an array of
bloom filters to store packet counts and drop probabili-
ties, which is similar to how AFQ stores round numbers.
Core-Stateless Fair Queueing (CSFQ) [44] enforces fair
allocation by splitting the mechanism between the edge
and the core network. All complexity of rate estima-
tion/labeling is at the edge, and the core performs simple
packet forwarding based on labels. It achieves fairness
by dropping packets with probability proportional to the
rate above the estimated fair rate.

Other schemes – PIAS [5] and FDPA [11] also
leverage multiple priority queues available in commod-
ity switches to emulate shortest-job-next scheduling or
achieve approximate fair bandwidth allocation using an
array of rate estimators to assign flows to different
priority queues. Although similar, AFQ uses multi-

ple queues to emulate an ideal fair-queueing algorithm.
A more recent approach PIFO [42] proposes a pro-
grammable scheduler that can implement variants of pri-
ority scheduling and ideal fair queuing at line rate by ef-
ficiently implementing O(logN) sorted insertion com-
plexity in hardware. However, like fixed-function sched-
ulers, the number of distinct flows that can be sched-
uled is bound in hardware and can support up to 2048
flows. In addition, we discuss how to store approximate
per-flow bid numbers in limited switch memory, and in-
crement current round number efficiently, which has not
been explored in prior work.

8 Conclusion
In this paper, we proposed a fair bandwidth allocation
mechanism called Approximate Fair Queueing (AFQ),
designed to run on emerging reconfigurable switches.
We approximate the various mechanisms of a fair queue-
ing scheduler using features available on reconfigurable
switches. Specifically, we approximate the per-flow state
regarding the number and timing of its previously trans-
mitted packets using mutable switch state; we perform
limited computation for each packet to compute its po-
sition in the output schedule; we dynamically determine
which egress queue to use for a given packet; and we
design a new dequeuing approach, called the Rotating
Strict Priority scheduler, to transmit packets in approxi-
mate sorted order. Using a networking-processor-based
prototype in a real hardware testbed and large scale sim-
ulations, we showed that AFQ approximates ideal queu-
ing behavior accurately, improving performance signifi-
cantly over existing schemes. We also showed that the
overhead of implementing AFQ on top of programmable
switches is fairly minimal.

Acknowledgments
We would like to thank the anonymous NSDI reviewers
and our shepherd Mohammad Alizadeh for their valuable
feedback. We also thank Antoine Kaufmann for many
insightful discussions. This research was partially sup-
ported by the National Science Foundation under Grants
CNS-1518702, CNS-1616774, and CNS-1714508.

References
[1] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,

VAIDYANATHAN, R., CHU, K., FINGERHUT, A., LAM,
V. T., MATUS, F., PAN, R., YADAV, N., AND VARGH-
ESE, G. CONGA: Distributed congestion-aware load bal-
ancing for datacenters. In Proceedings of the ACM SIG-
COMM Conference (2014).

[2] ALIZADEH, M., GREENBERG, A., MALTZ, D. A.,
PADHYE, J., PATEL, P., PRABHAKAR, B., SENGUPTA,
S., AND SRIDHARAN, M. Data Center TCP (DCTCP). In
Proceedings of the ACM SIGCOMM Conference (2010).

[3] ALIZADEH, M., JAVANMARD, A., AND PRABHAKAR,
B. Analysis of DCTCP: Stability, convergence, and fair-
ness. In Proceedings of the ACM SIGMETRICS Confer-
ence (2011).

[4] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S.,
MCKEOWN, N., PRABHAKAR, B., AND SHENKER, S.
pFabric: Minimal near-optimal datacenter transport. In
Proceedings of the ACM SIGCOMM Conference (2013).

[5] BAI, W., CHEN, L., CHEN, K., HAN, D., TIAN, C.,
AND WANG, H. Information-agnostic flow scheduling
for commodity data centers. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and
Implementation (Oakland, CA, 2015).

[6] BAREFOOT NETWORKS. Tofino Programmable
Switch. https://www.barefootnetworks.
com/technology/.

[7] BENSON, T., AKELLA, A., AND MALTZ, D. A. Net-
work traffic characteristics of data centers in the wild. In
Proceedings of the ACM SIGCOMM Conference on In-
ternet Measurement (2010).

[8] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M.,
MCKEOWN, N., REXFORD, J., SCHLESINGER, C.,
TALAYCO, D., VAHDAT, A., VARGHESE, G., AND

WALKER, D. P4: Programming protocol-independent
packet processors. ACM SIGCOMM Computer Commu-
nication Review 44, 3 (July 2014).

[9] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE,
G., MCKEOWN, N., IZZARD, M., MUJICA, F., AND

HOROWITZ, M. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
SDN. In Proceedings of the ACM SIGCOMM Conference
(2013), pp. 99–110.

[10] CARDWELL, N., CHENG, Y., GUNN, C. S., YEGANEH,
S. H., AND JACOBSON, V. BBR: Congestion-based con-
gestion control. Queue 14, 5 (Oct. 2016), 50:20–50:53.

[11] CASCONE, C., BONELLI, N., BIANCHI, L., CAPONE,
A., AND SANSÒ, B. Towards approximate fair band-
width sharing via dynamic priority queuing. In Local and
Metropolitan Area Networks (LANMAN) (2017), IEEE.

[12] CAVIUM. XPliant Ethernet switch prod-
uct family. http://www.cavium.com/
XPliant-Ethernet-Switch-Product-Family.
html.

[13] CAVIUM. OCTEON Development Kits, 2016.
http://www.cavium.com/octeon_software_
develop_kit.html.

[14] CAVIUM. Cavium OCTEON SoC Development
Board, 2017. http://www.cavium.com/OCTEON_
MIPS64.html.

[15] CHOLE, S., FINGERHUT, A., MA, S., SIVARAMAN, A.,
VARGAFTIK, S., BERGER, A., MENDELSON, G., AL-
IZADEH, M., CHUANG, S.-T., KESLASSY, I., ORDA,
A., AND EDSALL, T. dRMT: Disaggregated pro-
grammable switching. In Proceedings of the ACM SIG-
COMM Conference (2017).

[16] CHOUDHURY, A. K., AND HAHNE, E. L. Dy-
namic queue length thresholds for shared-memory packet
switches. IEEE/ACM Transactions on Networking 6, 2
(1998), 130–140.

[17] CORMODE, G., AND MUTHUKRISHNAN, S. An Im-
proved Data Stream Summary: The Count-Min Sketch
and its Applications. Journal of Algorithms 55, 1 (2005),
58–75.

[18] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis
and simulation of a fair queueing algorithm. In Proceed-
ings on the ACM SIGCOMM Conference (1989).

[19] FENG, W.-C., KANDLUR, D. D., SAHA, D., AND SHIN,
K. G. Stochastic Fair Blue: A queue management algo-
rithm for enforcing fairness. In IEEE INFOCOM (2001).

[20] JAFFE, J. Bottleneck flow control. IEEE Transactions on
Communications 29, 7 (1981), 954–962.

[21] JAIN, R., CHIU, D., AND HAWE, W. A quantitative
measure of fairness and discrimination for resource allo-
cation in shared computer systems. CoRR cs.NI/9809099
(1998).

[22] JIN, X., LI, X., ZHANG, H., SOULÉ, R., LEE, J., FOS-
TER, N., KIM, C., AND STOICA, I. NetCache: Balanc-
ing key-value stores with fast in-network caching. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles (2017).

[23] JOSE, L., YAN, L., VARGHESE, G., AND MCKE-
OWN, N. Compiling packet programs to reconfigurable
switches. In Proceedings of the 12th USENIX Confer-
ence on Networked Systems Design and Implementation
(2015).

[24] KESHAV, S. A control-theoretic approach to flow con-
trol. In Proceedings of the ACM SIGCOMM Conference
(1991).

[25] KESHAV, S. On the efficient implementation of fair
queueing. Journal of Internetworking: Research and Ex-
perience 2 (1991), 157–173.

[26] KESHAV, S. The packet pair flow control protocol. Tech.
Rep. 91-028, ICSI Berkeley, 1991.

[27] LIN, D., AND MORRIS, R. Dynamics of random early
detection. In ACM SIGCOMM Computer Communication
Review (1997).

https://www.barefootnetworks.com/technology/
https://www.barefootnetworks.com/technology/
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/octeon_software_develop_kit.html
http://www.cavium.com/octeon_software_develop_kit.html
http://www.cavium.com/OCTEON_MIPS64.html
http://www.cavium.com/OCTEON_MIPS64.html

[28] MAHAJAN, R., FLOYD, S., AND WETHERALL, D. Con-
trolling high-bandwidth flows at the congested router. In
Network Protocols, 2001. Ninth International Conference
on (2001), IEEE, pp. 192–201.

[29] MCKENNEY, P. E. Stochastic fairness queueing. In
INFOCOM’90, IEEE Computer and Communication So-
cieties. The Multiple Facets of Integration. Proceedings,
IEEE (1990).

[30] MITTAL, R., LAM, V. T., DUKKIPATI, N., BLEM, E.,
WASSEL, H., GHOBADI, M., VAHDAT, A., WANG, Y.,
WETHERALL, D., AND ZATS, D. TIMELY: RTT-based
congestion control for the datacenter. In Proceedings of
the ACM SIGCOMM Conference (2015).

[31] NAGLE, J. B. On packet switches with infinite storage.
In Innovations in Internetworking. Artech House, Inc.,
1988, pp. 136–139.

[32] OZDAG, R. Intel R© Ethernet Switch FM6000
Series-Software Defined Networking. http:
//www.intel.com/content/dam/www/
public/us/en/documents/white-papers/
ethernet-switch-fm6000-sdn-paper.pdf.

[33] PAN, R., BRESLAU, L., PRABHAKAR, B., AND

SHENKER, S. Approximate fairness through differential
dropping. ACM SIGCOMM Computer Communication
Review 33, 2 (Apr. 2003).

[34] PAREKH, A. K., AND GALLAGER, R. G. A generalized
processor sharing approach to flow control in integrated
services networks: The single-node case. IEEE/ACM
Transactions on Networking 1, 3 (1993), 344–357.

[35] POPA, L., KUMAR, G., CHOWDHURY, M., KRISHNA-
MURTHY, A., RATNASAMY, S., AND STOICA, I. Fair-
Cloud: Sharing the network in cloud computing. In Pro-
ceedings of the ACM SIGCOMM Conference (2012).

[36] RAICIU, C. MPTCP htsim simulator. http://
nrg.cs.ucl.ac.uk/mptcp/implementation.
html.

[37] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND

SNOEREN, A. C. Inside the social network’s (datacenter)
network. In Proceedings of the ACM SIGCOMM Confer-
ence (2015).

[38] SHARMA, N. K., KAUFMANN, A., ANDERSON, T.,
KRISHNAMURTHY, A., NELSON, J., AND PETER, S.
Evaluating the power of flexible packet processing for
network resource allocation. In Proceedings of the 14th
USENIX Conference on Networked Systems Design and
Implementation (Boston, MA, 2017), pp. 67–82.

[39] SHREEDHAR, M., AND VARGHESE, G. Efficient fair
queueing using deficit round robin. In Proceedings on the
ACM SIGCOMM Conference (1995).

[40] SIVARAMAN, A., CHEUNG, A., BUDIU, M., KIM, C.,
ALIZADEH, M., BALAKRISHNAN, H., VARGHESE, G.,
MCKEOWN, N., AND LICKING, S. Packet transactions:
High-level programming for line-rate switches. In Pro-
ceedings of the ACM SIGCOMM Conference (2016).

[41] SIVARAMAN, A., KIM, C., KRISHNAMOORTHY, R.,
DIXIT, A., AND BUDIU, M. DC.P4: Programming the
forwarding plane of a data-center switch. In Proceedings
of the ACM SIGCOMM Symposium on Software Defined
Networking Research (2015).

[42] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M.,
CHOLE, S., CHUANG, S.-T., AGRAWAL, A., BALAKR-
ISHNAN, H., EDSALL, T., KATTI, S., AND MCKEOWN,
N. Programmable packet scheduling at line rate. In Pro-
ceedings of the ACM SIGCOMM Conference (2016).

[43] SONG, H. Protocol-oblivious forwarding: Unleash the
power of SDN through a future-proof forwarding plane.
In Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking (2013).

[44] STOICA, I., SHENKER, S., AND ZHANG, H. Core-
Stateless Fair Queueing: Achieving approximately fair
bandwidth allocations in high speed networks. In Pro-
ceedings on the ACM SIGCOMM Conference (1998).

[45] STRAUSS, J., KATABI, D., AND KAASHOEK, F. A mea-
surement study of available bandwidth estimation tools.
In Proceedings of the 3rd ACM SIGCOMM Conference
on Internet Measurement (2003).

[46] VARGHESE, G., AND LAUCK, A. Hashed and hierar-
chical timing wheels: Efficient data structures for imple-
menting a timer facility. IEEE/ACM Transactions on Net-
working 5, 6 (Dec. 1997), 824–834.

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://nrg.cs.ucl.ac.uk/mptcp/implementation.html
http://nrg.cs.ucl.ac.uk/mptcp/implementation.html
http://nrg.cs.ucl.ac.uk/mptcp/implementation.html

A End-host Pseudocode
Figure 13 shows our adapted packet-pair flow control at
the end-host. Each flow begins by transmitting a pair
of back-to-back packets and waits for the acks to return.
The receiver measures the packet inter-arrival gap and
returns it back to the sender piggybacked on the ack. Af-
ter receiving the first ack, it starts normal transmission at
the estimated rate in packet-pairs. For every ack received
during normal transmission, the rate estimate is updated
based on the packet gap and ECN marks.

SENDER PROTOCOL

Startup():
state = STARTUP
SendPacketPair()

On AckReceive(pktpair, rtt):
newGap = pktpair.gap

if (rtt < minRTT):
minRTT = rtt

if state == STARTUP:
/* Start normal packet transmission. */
state = NORMAL
gap = newGap
SendPacketPair()

else:
/* Update rate estimate. */
gap = (1 - GAIN) * gap + GAIN * newGap
linkRate = MSS / gap
bdp = linkRate * minRTT

/* Throttle rate based on ECN marks. */
rate = linkRate * (1 - alpha / 2)

SendPacketPair():
/* Bound inflight bytes to roughly bdp. */
if (inflight > CWND_FACTOR * bdp):
/* Wait for ack or retransmission timeout. */
return

packet1 = nextPacket()
packet1.first = true
send(packet1)

/* Add delay if necessary. */

packet2 = nextPacket()
send(packet2)

if (state == STARTUP):
Wait for AckReceive()

else:
nextSendTime = now() + 2 * MSS / rate
scheduleTimer(SendPacketPair, nextSendTime)

RECEIVER PROTOCOL

OnPacketReceive (packet):
if (packet.first == true):

first_pktpair_time = now()
pktpair_ts = packet.sendTime

else:
gap = now - first_pktpair_time
ack = nextAck()
ack.sendTime = pktpair_ts
ack.gap = gap
send(ack)

Figure 13: Pseudocode for endhost flow control protocol

B Convergence and Fairness
To demonstrate that AFQ does indeed assign each flow
its fair share rapidly, we connected two hosts via a
10Gbps, 10µs RTT link and sequentially started-stopped
flows at 1-second intervals. We used standard TCP end-
hosts, and change the queueing mechanism from droptail
to AFQ. The time series in Figure 14 shows the through-
put achieved by each flow as they enter and exit the link.
AFQ assigns each flow its fair share immediately, while
a droptail queue exhibits high variance in throughput.

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9

T
h
ro

u
g

h
p

u
t

in
 G

b
p

s

Time in seconds

TCP with Droptail

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9

Time in seconds

TCP with AFQ

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5

Figure 14: Convergence test

Next, we plot the FCT versus flow size from our clus-
ter simulations in Figure 15 to demonstrate how fair each
scheme is with respect to flow size. An ideal fair queu-
ing scheme would be a straight line from the origin. All
schemes achieve fairness over a period of time for long
flows, but are significantly unfair to short flows either
due to slow-start or queueing behind other flows in the
network. AFQ lets all flows, regardless of size to achieve
their fair share within an RTT, leading to better fairness.

101

102

103

104

105

106

104 105 106 107

A
v
e
ra

g
e
 F

C
T
 (

in
 m

ir
co

 s
e
co

n
d
s)

Flow Size (in bytes)

TCP
DCTCP

SFQ
AFQ

Figure 15: FCT vs flow size at 70% network load.

To further study AFQ’s fairness guarantees, we simu-
lated a 10Gbps, 25µs RTT link and increased the number
of on-off senders transmitting concurrent flows on the
link. We measured the Jain Unfairness index (1−Jain
Fairness [21]) across all flows. Figure 16(a) shows the
unfairness across different queueing schemes. AFQ has
better fairness than other schemes, until the number of
concurrent flows exceeds the sketch size. Figures 16(b)
and (c), plot the same metric while varying the sketch-
size and number of FIFO queues available to AFQ.

 0

 0.1

 0.2

 0.3

 0.4

 10 100 1000 10000

Ja
in

 U
n
fa

ir
n
e
ss

 I
n
d

e
x

Number of Senders

(a) Unfairness with various queue types

Droptail
SFQ
AFQ

Ideal-FQ

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10 100 1000 10000

Number of Senders

(b) Unfairness with #queues

AFQ-4
AFQ-8

AFQ-12
AFQ-16
AFQ-32

 0

 0.03

 0.06

 0.09

 0.12

 10 100 1000 10000

Number of Senders

(c) Unfairness with sketch size

1x512
2x1024
4x1024
4x2048
2x4096

Figure 16: Micro-benchmarks showing deviation of various queuing mechanism compared to ideal fair queuing using a DCTCP end-host.

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

N
o
m

a
liz

e
d

 F
C

T

Network Load (%)

AFQ-4
AFQ-8

AFQ-16
AFQ-32

(a) FCT vs number of FIFO queues

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

N
o
m

a
liz

e
d

 F
C

T

Network Load (%)

TCP-Droptail
TCP-AFQ

DCTCP-AFQ
PP-AFQ

(b) AFQ performance with end-host protocols

10-4

10-3

10-2

10-1

 0 20 40 60 80 100Fr
a
ct

io
n
 o

f
p

a
ck

e
ts

 m
is

-e
st

im
a
te

d

Network Load (%)

1x512
2x1024
4x2048
4x4096
2x8192

(c) Round Estimation vs Sketch Size

Figure 17: Benchmarks showing the impact of various AFQ parameters.

C Impact of Number of Queues on FCT
AFQ uses multiple FIFO queues to store packets in an
approximate sorted order. To understand how many
FIFO queues are required per-port to get accurate fair-
queueing behavior, we ran the same enterprise workload
while varying the number of FIFO queues available to
the AFQ implementation and keeping BpR fixed at 1
MSS. Figure 17a shows the impact on average FCT of
all flows as we varied the number of queues from 4 to
32. When fewer queues are available, AFQ buffers pack-
ets for very few rounds at any given time. This causes
unnecessary packet drops during bursty arrivals, and also
leads to poor bandwidth estimation at the endhost. Once
there are sufficient queues to absorb packet bursts and
accurately estimate bottleneck bandwidth, AFQ achieves
near ideal fair queueing behavior, which occured around
16-20 queues. This is not surprising, given the analysis
from [2], a queue of size roughly 1/6th of the bandwidth
delay product is required for efficient link utilization. For
our testbed with 40 Gbps links and 20µs RTT, this value
is ≈20KB, translating to about 15 queues.

D AFQ with Other End-host Protocols
As an in-network switch mechanism, AFQ can be de-
ployed without modifying the end-host to achieve sig-
nificant performance gains. To quantify the benefits,
we simulate the same enterprise workload using TCP,
DCTCP end-hosts with all switches implementing the
AFQ mechanism. Figure 17b shows the significant im-

provement in average FCT when switching from droptail
to AFQ behavior inside the network. Moving to DCTCP
gives another small improvements due to shorter queues;
finally, using packet-pair flow control eliminates slow-
start behaviors, further reducing FCT. This matches our
observations from the hardware prototype emulation.

E Impact of Sketch Size
AFQ stores bid numbers in a count-min sketch, trading
off space for accuracy. To determine how large a sketch
is required to achieve sufficient accuracy without affect-
ing performance, we re-ran the enterprise workload in
the leaf-spine topology while tracking exact bid numbers
and those returned by the count-min sketch. During the
10 second simulation run, we count how many times a
packet bid number was mis-estimated and enqueued in
a later-than-expected queue. Figure 17c shows the mis-
estimation rate as we change the sketch size. This is less
than 1% using a relatively small sketch of 2x1024. This
is not surprising since the collision probability is propor-
tional to number of active flows that have packets en-
queued at the switch, which is generally a few tens to
hundreds. It is not affected by the total number of on-
going flows, which could be several thousands. Such a
low rate of mis-estimation does not significantly impact
the flow-level performance, because a bad estimate de-
lays the packet by only a small amount of time. Fur-
ther, increasing the number of cells in each row has a
more significant impact on the accuracy than increasing
the number of rows.

