
This paper is included in the Proceedings of the
17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-13-7

Open access to the Proceedings of the
17th USENIX Symposium on Networked

Systems Design and Implementation
(NSDI ’20) is sponsored by

AccelTCP: Accelerating Network Applications
with Stateful TCP Offloading

YoungGyoun Moon and SeungEon Lee, KAIST; Muhammad Asim Jamshed, Intel
Labs; KyoungSoo Park, KAIST

https://www.usenix.org/conference/nsdi20/presentation/moon

AccelTCP: Accelerating Network Applications with Stateful TCP
Offloading

YoungGyoun Moon
KAIST

SeungEon Lee
KAIST

Muhammad Asim Jamshed
Intel Labs

KyoungSoo Park
KAIST

Abstract
The performance of modern key-value servers or

layer-7 load balancers often heavily depends on the ef-
ficiency of the underlying TCP stack. Despite numer-
ous optimizations such as kernel-bypassing and zero-
copying, performance improvement with a TCP stack is
fundamentally limited due to the protocol conformance
overhead for compatible TCP operations. Unfortunately,
the protocol conformance overhead amounts to as large
as 60% of the entire CPU cycles for short-lived connec-
tions or degrades the performance of L7 proxying by
3.2x to 6.3x.
This work presents AccelTCP, a hardware-assisted

TCP stack architecture that harnesses programmable
network interface cards (NICs) as a TCP protocol acceler-
ator. AccelTCP can offload complex TCP operations such
as connection setup and teardown completely to NIC,
which simplifies the host stack operations and frees a
significant amount of CPU cycles for application process-
ing. In addition, it supports running connection splicing
on NIC so that the NIC relays all packets of the spliced
connections with zero DMA overhead. Our evaluation
shows that AccelTCP enables short-lived connections to
perform comparably to persistent connections. It also im-
proves the performance of Redis, a popular in-memory
key-value store, and HAProxy, a widely-used layer-7
load balancer, by 2.3x and 11.9x, respectively.

1 Introduction
Transmission Control Protocol (TCP) [24] is undeniably
the most popular protocol in modern data networking.
It guarantees reliable data transfer between two end-
points without overwhelming either end-point nor the
network itself. It has become ubiquitous as it simply
requires running on the Internet Protocol (IP) [23] that
operates on almost every physical network.

Ensuring the desirable properties of TCP, however,
often entails a severe performance penalty. This is es-
pecially pronounced with the recent trend that the gap
between CPU capacity and network bandwidth widens.
Two notable scenarios where modern TCP servers suffer
from poor performance are handling short-lived con-
nections and layer-7 (L7) proxying. Short-lived connec-
tions incur a serious overhead in processing small con-
trol packets while an L7 proxy requires large compute
cycles and memory bandwidth for relaying packets be-
tween two connections. While recent kernel-bypass TCP
stacks [5, 30, 41, 55, 61] have substantially improved the
performance of short RPC transactions, they still need to
track flow states whose computation cost is as large as
60% of the entire CPU cycles (Section §2). An alternative
might be to adopt RDMA [37, 43] or a custom RPC pro-
tocol [44], but the former requires an extra in-network
support [7, 8, 70] while the latter is limited to closed
environments. On the other hand, an application-level
proxy like L7 load balancer (LB) may benefit from zero
copying (e.g., via the splice() system call), but it must
perform expensive DMA operations that would waste
memory bandwidth.
The root cause of the problem is actually clear – the

TCP stack must maintain mechanical protocol confor-
mance regardless of what the application does. For in-
stance, a key-value server has to synchronize the state at
connection setup and closure even when it handles only
two data packets for a query. An L7 LB must relay the
content between two separate connections even if its
core functionality is determining the back-end server.

AccelTCP addresses this problem by exploiting mod-
ern network interface cards (NICs) as a TCP protocol ac-
celerator. It presents a dual-stack TCP design that splits
the functionality between a host and a NIC stack. The
host stack holds the main control of all TCP operations;

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 77

it sends and receives data reliably from/to applications
and performs control-plane operations such as conges-
tion and flow control. In contrast to existing TCP stacks,
however, it accelerates TCP processing by selectively
offloading stateful operations to the NIC stack. Once
offloaded, the NIC stack processes connection setup
and teardown as well as connection splicing that re-
lays packets of two connections entirely on NIC. The
goal of AccelTCP is to extend the performance benefit
of traditional NIC offload to short-lived connections and
application-level proxying while being complementary
to existing offloading schemes.

Our design brings two practical benefits. First, it signif-
icantly saves the compute cycles andmemory bandwidth
of the host stack as it simplifies the code path. Connec-
tion management on NIC simplifies the host stack as
the host needs to keep only the established connections
as well as it avoids frequent DMA operations for small
control packets. Also, forwarding packets of spliced con-
nections directly on NIC eliminates DMAoperations and
application-level processing. This allows the application
to spend precious CPU cycles on its main functionality.
Second, the host stack makes an offloading decision flex-
ibly on a per-flow basis. When an L7 LB needs to check
the content of a response of select flows, it opts them
out of offloading while other flows still benefit from con-
nection splicing on NIC. When the host stack detects
overload of the NIC, it can opportunistically reduce the
offloading rate and use the CPU instead.
However, performing stateful TCP operations on

NIC is non-trivial due to following challenges. First,
maintaining consistency of transmission control blocks
(TCBs) across host and NIC stacks is challenging as any
operation on one stack inherently deviates from the
state of the other. To address the problem, AccelTCP
always transfers the ownership of a TCB along with an
offloaded task. This ensures that a single entity solely
holds the ownership and updates its state at any given
time. Second, stateful TCP operations increase the im-
plementation complexity on NIC. AccelTCP manages
the complexity in two respects. First, it exploits modern
smart NICs equipped with tens of processing cores and
a large memory, which allows flexible packet processing
with C and/or P4 [33]. Second, it limits the complexity
by resorting to a stateless protocol or by cooperating
with the host stack. As a result, the entire code for the
NIC stack is only 1,501 lines of C code and 195 lines of
P4 code, which is small enough to manage on NIC.

Our evaluation shows that AccelTCP brings an enor-
mous performance gain. It outperforms mTCP [41] by
2.2x to 3.8x while it enables non-persistent connections

to perform comparably to persistent connections on
IX [30] or mTCP. AccelTCP’s connection splicing of-
fload achieves a full line rate of 80 Gbps for L7 proxying
of 512-byte messages with only a single CPU core. In
terms of real-world applications, AccelTCP improves
the performance of Redis [17] and HAProxy [6] by a
factor of 2.3x and 11.9x, respectively.
The contribution of our work is summarized as fol-

lows. (1) We quantify and present the overhead of TCP
protocol conformance in short-lived connections and
L7 proxying. (2) We present the design of AccelTCP, a
dual-stack TCP processing system that offloads select
features of stateful TCP operations to NIC. We explain
the rationale for our target tasks of NIC offload, and
present a number of techniques that reduce the imple-
mentation complexity on smart NIC. (3)We demonstrate
a significant performance benefit of AccelTCP over exist-
ing kernel-bypass TCP stacks like mTCP and IX as well
as the benefit to real-world applications like a key-value
server and an L7 LB.

2 Background and Motivation
In this section, we briefly explain the need for an NIC-
accelerated TCP stack, and discuss our approach.

2.1 TCP Overhead in Short Connections
& L7 Proxying

Short-lived TCP connections are prevalent in data cen-
ters [31, 65] as well as in wide-area networks [54, 64, 66].
L7 proxying is also widely used in middlebox applica-
tions such as L7 LBs [6, 36] and application-level gate-
ways [2, 19]. Unfortunately, application-level perfor-
mance of these workloads is often suboptimal as the
majority of CPU cycles are spent on TCP stack oper-
ations. To better understand the cost, we analyze the
overhead of the TCP stack operations in these workloads.
To avoid the inefficiency of the kernel stack [38, 39, 60],
we use mTCP [41], a scalable user-level TCP stack on
DPDK [10], as our baseline stack for evaluation. We use
one machine for a server (or proxy) and four clients and
four back-end servers, all equipped with a 40GbE NIC.
The detailed experimental setup is in Section §6.
Small message transactions: To measure the over-
head of a short-lived TCP connection, we compare the
performance of non-persistent vs. persistent connec-
tions with a large number of concurrent RPC transac-
tions. We spawn 16k connections where each transac-
tion exchanges one small request and one small response
(64B) between a client and a server. A non-persistent
connection performs only a single transaction while a
persistent connection repeats the transactions without

78 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.9 1.8
3.4

6.3
2.9

5.4

9.8

16.1

0
3
6
9

12
15
18

1 2 4 8Tr
an

sa
ct

io
ns

/s
ec

 (x
10

6)

Number of CPU cores

Non-persistent Persistent

Figure 1: Small packet (64B) performance with non-persistent
and persistent connections

a closure. To minimize the number of small packets, we
patch mTCP to piggyback every ACK on the data packet.
Figure 1 shows that persistent connections outper-

form non-persistent connections by 2.6x to 3.2x. The
connection management overhead is roughly propor-
tional to the number of extra packets that it handles; two
packets per transaction with a persistent connection vs.
six 1 packets for the same task with a non-persistent con-
nection. Table 1 shows the breakdown of the CPU cycles
where almost 60% of them are attributed to connection
setup and teardown. The overhead mainly comes from
TCP protocol handling with connection table manage-
ment, TCB construction and destruction, packet I/O, and
L2/L3-level processing of control packets.
Our experiments may explain the strong preference

to persistent connections in data centers. However, not
all applications benefit from the persistency. When ap-
plication data is inherently small or transferred sporadi-
cally [32, 69], it would result in a period of inactivity that
taxes on server resources. Similarly, persistent connec-
tions are often deprecated in PHP applications to avoid
the risk of resource misuse [28]. In general, supporting
persistent connections is cumbersome and error-prone
because the application not only needs to keep track of
connection states, but it also has to periodically check
connection timeout and terminate idle connections. By
eliminating the connection management cost with NIC
offload, our work intends to free the developers from
this burden to choose the best approach without perfor-
mance concern.
Application-level proxying: An L7 proxy typically
operates by (1) terminating a client connection (2) ac-
cepting a request from the client and determining the
back-end server with it, and creating a server-side con-
nection, and (3) relaying the content between the client
and the back-end server. While the key functionality
of an L7 proxy is to map a client-side connection to a
back-end server, it consumes most of CPU cycles on re-
laying the packets between the two connections. Packet

1SYN, SYN-ACK, ACK-request, response-FIN, FIN-ACK, and ACK.

Connection
setup/
teardown

TCP processing and state update 24.0%
60.5%

TCP connection state init/destroy 17.2%
Packet I/O (control packet) 10.2%
L2-L3 processing/forward 9.1%

Message
delivery

TCP processing and state update 11.0%
29.0%

Message copy via socket buffer 8.4%
Packet I/O (data packet) 5.1%
L2-L3 processing/forward 4.5%

Socket/epoll API calls 5.6%
Timer handling and context switching 3.5%
Application logic 1.4%

Table 1:CPU usage breakdown of a user-level TCP echo server
(a single 64B packet exchange per connection)

64B 1500B
L7 proxy (mTCP) 2.1 Gbps 5.3 Gbps
L7 proxy with splice() (mTCP) 2.3 Gbps 6.3 Gbps
L3 forward at host (DPDK) 7.3 Gbps 39.8 Gbps
L3 forward at NIC 2 28.8 Gbps 40.0 Gbps

Table 2: L7 proxying and L3 forwarding performance on a
single CPU core

relaying incurs a severe memory copying overhead as
well as frequent context switchings between the TCP
stack and the application. While zero-copying APIs like
splice() can mitigate the overhead, DMA operations be-
tween the host memory and the NIC are unavoidable
even with a kernel-bypass TCP stack.
Table 2 shows the 1-core performance of a simple

L7 proxy on mTCP with 16k persistent connections
(8k connections for clients-to-proxy and proxy-to-back-
end servers, respectively). The proxy exchanges n-byte
(n=64 or 1500) packets between two connections, and
we measure the wire-level throughput at clients includ-
ing control packets. We observe that TCP operations
in the proxy significantly degrade the performance by
3.2x to 6.3x compared to simple packet forwarding with
DPDK [10], despite using zero-copy splice(). Moreover,
DMA operations further degrade the performance by
3.8x for small packets.
Summary: We confirm that connection management
and packet relaying consume a large amount of CPU cy-
cles, severely limiting the application-level performance.
Offloading these operations to NIC promises a large
potential for performance improvement.

2.2 NIC Offload of TCP Features
There have been a large number of works and debates
on NIC offloading of TCP features [35, 47, 50, 57]. While
AccelTCP pursues the same benefit of saving CPU cycles

2All 120 flow-processing cores in Agilio LX are enabled.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 79

and memory bandwidth, it targets a different class of
applications neglected by existing schemes.
Partial TCP offload: Modern NICs typically support
partial, fixed TCP function offloads such as TCP/IP
checksum calculation, TCP segmentation offload (TSO),
and large receive offload (LRO). These significantly save
CPU cycles for processing large messages as they avoid
scanning packet payload and reduce the number of in-
terrupts to handle. TSO and LRO also improve the DMA
throughput as they cut down the DMA setup cost re-
quired to deliver many small packets. However, their
performance benefit is mostly limited to large data trans-
fer as short-lived transactions deal with only a few of
small packets.
Full Stack offload: TCP Offload Engine (TOE) takes
a more ambitious approach that offloads entire TCP
processing to NIC [34, 67]. Similar to our work, TOE
eliminates the CPU cycles and DMA overhead of con-
nection management. It also avoids the DMA transfer of
small ACK packets as it manages socket buffers on NIC.
Unfortunately, full stack TOE is unpopular in practice as
it requires invasive modification of the kernel stack and
the compute resource on NIC is limited [12]. Also, oper-
ational flexibility is constrained as it requires firmware
update to fix bugs or to replace algorithms like conges-
tion control or to add new TCP options. Microsoft’s TCP
Chimney [15] deviates from the full stack TOE as the
kernel stack controls all connections while it offloads
only data transfer to the NIC. However, it suffers from
similar limitations that arise as the NIC implements TCP
data transfer (e.g., flow reassembly, congestion and flow
control, buffer management). As a result, it is rarely en-
abled these days [27].

In comparison, existing schemes mainly focus on effi-
cient large data transfer, but AccelTCP targets perfor-
mance improvement with short-lived connections and
L7 proxying. AccelTCP is complementary to existing
partial TCP offloads as it still exploits them for large
data transfer. Similar to TCP Chimney, AccelTCP’s host
stack assumes full control of the connections. However,
the main offloading task is completely the opposite: Ac-
celTCP offloads connection management while the host
stack implements entire TCP data transfer. This design
substantially reduces the complexity on NIC while it
extends the benefit to an important class of modern
applications.

2.3 Smart NIC for Stateful Offload
Smart NICs [1, 3, 14, 25] are gaining popularity as
they support flexible packet processing at high speed
with programming languages like C or P4 [33]. Re-

Host

NIC

Packet Processing Subsystem

Flow Processing
Cores (FPCs)External

DRAM
(DDR3)

PCIe interface

IOH CPU

Ethernet ports
Medium Access Control (MAC)

General-purpose islands

FPC

Island local memory

FPC

FPC
FPC
FPC

FPC
FPC
FPC

FPC
FPC
FPC

FPC

Special-purpose islands

FPC

Island local memory

FPC

FPC
FPC
FPC

FPC
FPC
FPC

FPC
FPC
FPC

FPC

On-chip SRAM

Figure 2: Architecture of SoC-based NIC (Agilio LX)

0

10

20

30

40

50

60

0 200 400 600 800

pa

ck
et

s/
se

c
(1

06)

CPU cycles spent in custom code

Agilio LX (64B) 40GbE max (64B)
40GbE max (128B) 40GbE max (256B)

Figure 3: Packet forwarding performance on Agilio LX

cent smart NICs are flexible enough to run Open
vSwitch [62], Berkeley packet filter [49], or even key-
value lookup [53], often achieving 2x to 3x performance
improvement over CPU-based solutions [16]. In this
work, we use Netronome Agilio LX as a smart NIC plat-
form to offload stateful TCP operations.
As shown in Figure 2, Agilio LX employs 120 flow

processing cores (FPCs) running at 1.2GHz. 36 FPCs
are dedicated to special operations (e.g., PCI or Inter-
laken) while remaining 84 FPCs can be used for arbitrary
packet processing programmed in C and P4. One can im-
plement the basic forwarding path with a match-action
table in P4 and add custom actions that require a fine-
grained logic written in C. The platform also provides
fast hashing, checksum calculation, and cryptographic
operations implemented in hardware.
One drastic difference from general-purpose CPU is

that FPCs have multiple layers of non-uniform memory
access subsystem – registers and memory local to each
FPC, shared memory for a cluster of FPCs called "island",
or globally-accessible memory by all FPCs. Memory ac-
cess latency ranges from 1 to 500 cycles depending on
the location,where access to smallermemory tends to be
faster than larger ones. We mainly use internal memory
(IMEM, 8MB of SRAM) for flow metadata and external
memory (EMEM, 8GB of DRAM) for packet contents.
Depending on the flow metadata size, IMEM can sup-
port up to 128K to 256K concurrent flows. While EMEM
would support more flows, it is 2.5x slower. Each FPC

80 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Host Central TCP operations
Reliable data transfer
Buffer management

Congestion/flow control

Peripheral TCP operations
Connection setup/teardown

Connection splicing
Segmentation/checksum

NIC

TCB TCB

Figure 4: Split of TCP functionality in AccelTCP

can run up to 8 cooperative threads – access to slow
memory by one thread would trigger a hardware-based
context switch to another, which takes only 2 cycles.
This hides memory access latency similarly to GPU.

Figure 3 shows the packet forwarding performance
of Agilio LX as a function of cycles spent by custom C
code, where L3 forwarding is implemented in P4. We
see that it achieves the line rate (40 Gbps) for any pack-
ets larger than 128B. However, 64B packet forwarding
throughput is only 42.9 Mpps (or 28.8 Gbps) even with-
out any custom code. We suspect the bottleneck lies in
scattering and gathering of packets across the FPCs. The
performance starts to drop as the custom code spends
more than 200 cycles, so minimizing cycle consumption
on NIC is critical for high performance.

3 AccelTCP Design Rationale
AccelTCP is a dual-stack TCP architecture that har-
nesses NIC hardware as a TCP protocol accelerator. So,
the primary task in AccelTCP’s design is to determine
the target for offloading. In this regard, AccelTCP di-
vides the TCP stack operations into two categories: cen-
tral TCP operations that involve application data trans-
fer and peripheral TCP operations required for protocol
conformance or mechanical operations that can bypass
the application logic. Central TCP operations refer to
all aspects of application data transfer – reliable data
transfer with handling ACKs, inferring loss and packet
retransmission, tracking received data and performing
flow reassembly, enforcing congestion/flow control, and
detecting errors (e.g., abrupt connection closure by a
peer). These are typically complex and subject to flexi-
ble policies, which demands variable amount of compute
cycles. One can optimize them by exploiting flow-level
parallelism [5, 30, 41, 59] or by steering the tasks into
fast and slow paths [48] on kernel-bypass stacks. How-
ever, the inherent complexity makes it a poor fit for NIC
offloading as evidenced by the full stack TOE approach.
Peripheral operations refer to the remaining tasks

whose operation is logically independent from the ap-
plication. These include traditional partial NIC offload

tasks 3, connection setup and teardown, and blind relay-
ing of packets between two connections that requires
no application-level intervention. Peripheral tasks are
either stateless operations with a fixed processing cost
or lightly stateful operations that synchronize the states
for reliable data transfer. We mainly target these opera-
tions for offloading as they can be easily separated from
the host side that runs applications.
Connection management offload: State synchro-
nization at the boundary of a connection is a key re-
quirement for TCP, but it is a pure overhead from the ap-
plication’s perspective. While NIC offload is logically de-
sirable, conventional wisdom suggests otherwise due to
complexity [15, 48]. Our position is that one can tame the
complexity on recent smart NICs. First, connection setup
operations can be made stateless with SYN-cookies [20].
Second, the common case of connection teardown is
simple state transition, and modern smart NICs have
enough resources to handle a few exceptions.
Connection splicing offload: Offloading connection
splicing to NIC is conceptually complex as it requires
state management of two separate connections on NIC.
However, if the application does not modify the re-
layed content, as is often the case with L7 LBs, we can
simulate a single logical connection with two physi-
cal connections. This allows the NIC to operate as a
fast packet forwarder that simply translates the packet
header. The compute cycles for this are fixed with a
small per-splicing state.
To support the new offload tasks, we structure the

dual-stack design with the following guidelines.
1. Full control by the host side: The host side should
enforce full control of offloading, and it should be able to
operate standalone. This is because the host stack must
handle corner cases that cannot benefit from offload. For
example, a SYN packet without the timestamp option
should be handled by the host stack as SYN-cookie-based
connection setup would lose negotiated TCP options
(Section §4). Also, the host stack could decide to tem-
porarily disable connection offload when it detects the
overload of the NIC.
2. Single ownership of a TCB: AccelTCP offloads
stateful operations that require updating the TCB. How-
ever, maintaining shared TCBs consistently across two
stacks is very challenging. For example, a send buffer
may have unacknowledged data along with the last FIN
packet. The host stack may decide to deliver all data
packets for itself while it offloads the connection tear-
down to NIC simultaneously. Unfortunately, handling

3Such as checksum calculation, TSO, and LRO.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 81

ACKs and retransmission across two stacks require care-
ful synchronization of the TCB. To avoid such a case,
AccelTCP enforces an exclusive ownership of the TCB at
any given time – either host or NIC stack holds the own-
ership but not both. In the above case, the host stack
offloads the entire data to the NIC stack and forgets
about the connection. The NIC stack handles remaining
data transfer as well as connection teardown.
3. Minimal complexity on NIC: Smart NICs have lim-
ited compute resources, so it is important to minimize
complex operations on NIC. A tricky case arises at con-
nection teardown as the host stack can offload data trans-
fer as well. In that case, the host stack limits the amount
of data so that the NIC stack avoids congestion control
and minimizes state tracking of data packets.

4 AccelTCP NIC Dataplane
In this section, we present the design of AccelTCP NIC
stack in detail. Its primary role is to execute three offload
tasks requested by the host stack. Each offload task can
be enabled independently and the host side can decide
which flows to benefit from it. The overall operation of
NIC offload is shown in Figure 5.

4.1 Connection Setup Offload
An AccelTCP server can offload the connection setup
process completely to the NIC stack. For connection
setup offload, the server installs the metadata such as
local IP addresses and ports for listening on NIC, and
the NIC stack handles all control packets in a three-way
handshake. Then, only the established connections are
delivered to the host stack.
AccelTCP leverages SYN cookies [20] for stateless

handshake on NIC. Stateless handshake enables a more
efficient implementation asmost smartNICs support fast
one-way hashing functions in hardware [1, 3, 14]. When
a SYN packet arrives, the NIC stack responds with an
SYN-ACK packet whose initial sequence number (ISN)
is chosen carefully. The ISN consists of 24 bits of a hash
value produced with the input of the 4-tuple of a connec-
tion and a nonce, 3 bits of encoded maximum segment
size (MSS), and time-dependent 5 bits to prevent replay
attacks. When an ACK for the SYN-ACK packet arrives,
the NIC stack verifies if the ACK number matches (ISN +
1). If it matches, the NIC stack passes the ACK packet up
to the host stack with a special marking that indicates
a new connection and the information on negotiated
TCP options. To properly handle TCP options carried
in the initial SYN, the NIC stack encodes all negotiated
options in the TCP Timestamps option [22] of the SYN-
ACK packet [9]. Then, the NIC stack can retrieve the

information from the TSecr value echoed back with the
ACK packet. In addition, we use extra one bit in the
timestamp field to differentiate a SYN-ACK packet from
other packets. This would allow the NIC stack to bypass
ACK number verification for normal packets. The TCP
Timestamps option is popular (e.g., enabled on 84% of
hosts in a national-scale network [51]), and enabled by
default on most OSes, but in case a client does not sup-
port it, the NIC stack hands the setup process over to
the host stack.

One case where SYN cookies are deprecated is when
the servermust send the data first after connection setup
(e.g., SMTP server). In this case, the client could wait
indefinitely if the client-sent ACK packet is lost as the
SYN-ACK packet is never retransmitted. Such applica-
tions should disable connection setup offload and have
the host stack handle connection setup instead.

4.2 Connection Teardown Offload
The application can ask for offloading connection tear-
down on a per-flow basis. If the host stack decides to
offload connection teardown, it hands over the owner-
ship of the TCB and remaining data in the send buffer
to the NIC stack. Then, the host stack removes the flow
entry from its connection table, and the NIC stack con-
tinues to handle the teardown.

Connection teardown offload is tricky as it must main-
tain per-flow states while it should ensure reliable de-
livery of the FIN packet with the offloaded data. To
minimize the complexity, the host stack offloads con-
nection teardown only when the following conditions
are met. First, the amount of remaining data should be
smaller than the send window size. This would avoid
complex congestion control on NIC while it still benefits
most short-lived connections. 4 Second, if the application
wants to confirm data delivery at close(), the host stack
should handle the connection teardown by itself. For
example, an application may make close() to block until
all data is delivered to the other side (e.g., SO_LINGER
option). In that case, processing the teardown at the host
stack is much simpler as it needs to report the result to
the application. Fortunately, blocking close() is rare in
busy TCP servers as it not only kills the performance, but
a well-designed application-level protocol may avoid it.
Third, the number of offloaded flows should not exceed
a threshold, determined by available memory size on
NIC. For each connection teardown, the host stack first
checks the number of connection closures being handled
by the NIC, and the host stack carries out the connection
teardown if the number exceeds the threshold.

4RFC 6928 [21] suggests 10 MSS as the initial window size.

82 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SYN

SYN-ACK (cookie)

ACK (cookie)

Client NIC Server

listen()

accept()

① Install metadata

③ Verify SYN cookie

ACK*

② Create SYN cookie

④ Notify host of
a new connection

(a) Connection setup offload (b) Connection teardown offload

Client NIC Server

close()

write()
FIN*(data)

FIN(data)

FIN-ACK

ACK

① Store connection
metadata

④ Clear connection
metadata

TIME_WAIT

③ Reply with ACK

② Retransmit FIN
FIN(data)

RTO

(c) Connection splicing offload

Client Proxy Server

nsplice()

③ L4 switch at NIC

② Store metadata of
spliced connections

① L7 proxy at host

NIC

⑤ Clear metadata and notify host

(FIN handshake)
④ Track connection

teardown

Figure 5: AccelTCP NIC offload (We show only active close() by server for (b), but it also supports passive close().)

(a) At T

B1

timeout

(b) At T + 0.1 ms (c) At T + 0.2 ms

TRTO = 0.1ms

0.3ms
0.2ms

0ms 2ms 1.9ms0.1ms

Figure 6: Timer bitmap wheel for RTO management on NIC.
TRTO represents the remaining time until retransmission.

The NIC stack implements the teardown offload by
extending the TSO mechanism. On receiving the offload
request, it stores a 26-byte flow state 5 at the on-chip
SRAM (e.g., 8MB of IMEM), segments the data into TCP
packets, and send them out. Then, it stores the entire
packets at the off-chip DRAM (e.g., 8GB of EMEM) for
potential retransmission. This would allow tracking over
256k concurrent flows being closed on NIC.
Timeout management: The teardown process re-
quires timeout management for packet retransmission
and for observing a timeout in the TIME_WAIT state.
AccelTCP uses three duplicate ACKs and expiration of
retransmission timeout (RTO) as a trigger for packet
retransmission. For teardown offload, however, RTO is
the main mechanism as the number of data packets is
often too small for three duplicate ACKs. Also, any side
that sends the FIN first would end up in the TIME_WAIT
state for a timeout. A high-performance server typically
avoids this state by having the clients initiate the con-
nection closure, but sometimes it is inevitable. AccelTCP
supports the TIME_WAIT state, but it shares the same
mechanism as RTO management for the timer.
Unfortunately, an efficient RTO implementation on

NIC is challenging. Formulticore CPU systems, a list or a
hash table implementation wouldworkwell as eachCPU
core handles only its own flows affinitized to it without
a lock. However, smart NICs often do not guarantee

5a 4-tuple of the connection, TCP state, expected sequence and
ACK numbers, and current RTO.

flow-core affinity, so a list-based implementation would
incur huge lock contention with many processor cores.
We observe that RTO management is write-heavy

as each offloaded flow (and each packet transmission)
would register for a new RTO. Thus, we come up with a
data structure called timer bitmap wheel, which allows
concurrent updates withminimal lock contention. It con-
sists of𝑁 timer bitmaps where each bitmap is associated
with a distinct timeout value. The time interval between
two neighboring timer bitmaps is fixed (e.g., 100 us for
Figure 6). When one time interval elapses, all bitmaps
rotate in the clockwise direction by one interval, like
Figure 6-(b). Bitmap rotation is efficiently implemented
by updating a pointer to the RTO-expired bitmap every
time interval. Each timer bitmap records all flows with
the same RTO value, where the location of a bit repre-
sents a flow id (e.g., n-th bit in a bitmap refers to a flow
id, n). When the RTO of a timer bitmap expires, all flows
in the bitmap retransmit their unacknowledged packets.
From the location of each bit that is set, one can derive
the corresponding flow id and find the pointer to its flow
state that holds all the metadata required for retransmis-
sion. Then, all bits in the bitmap are reset to zero and its
RTO is reset to (N x (time interval)). RTO-expired flows
register for a new RTO. When an ACK for the FIN of a
flow arrives, the flow is removed from its RTO bitmap.
One can implement an RTO larger than the maximum
by keeping a counter in the flow state that decrements
every expiration of the maximum RTO.

The timer bitmap wheel allows concurrent updates by
multiple flows as long as their flow ids belong to differ-
ent 32-bit words in the bitmap. Only the flows whose ids
share the same 32-bit word contend for a lock for access.
On the down side, it exhibits two overheads: memory
space for bitmaps and bitmap scanning at RTO expira-
tion. The memory consumption is not a big concern as
it requires only 8KB for each bitmap for 64k concurrent
flows being closed. We reduce the scanning overhead
by having multiple cores scan a different bitmap region
in parallel. Keeping a per-region counter might further

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 83

IPC(PC) IPP(Ppc)

IPP(Pps) IPS(PS)

Client Proxy
Server

OFFLOADIPC(PC) IPP(Ppc)
SEQ #: X
ACK #: Y

IPP(Pps) IPS(PS)
SEQ #: X + ΔSEQ
ACK #: Y + ΔACK

NIC

ΔSEQ = (Last SEQ# written to WBUFS) – (Last SEQ# read from RBUFC)
ΔACK = (Last SEQ# written to WBUFS) – (Last SEQ# read from RBUFS)

RBUFC

WBUFC

WBUFS

RBUFS

Figure 7: Connection splicing on NIC dataplane. IP𝐶 , IP𝑃 , IP𝑆 :
IP addresses of client, proxy, and server, P𝐶 , P𝑆 : port numbers
of client and server, P𝑝𝑐 , P𝑝𝑠 : port numbers of proxy for the
client side and the server side, RBUF𝐶 , RBUF𝑆 : read buffers on
each side, WBUF𝐶 , WBUF𝑆 : write buffers on each side.

reduce the scanning overhead, but we find that the cost
for counter update is too expensive even with atomic
increment/decrement.

4.3 Connection Splicing Offload
Connection splicing offload on NIC allows zero-DMA
data transfer. The key idea is to simulate a single con-
nection by exploiting the NIC as a simple L4 switch that
translates the packet header. An L7 proxy can ask for
connection splicing on NIC if it no longer wants to relay
packets of the two connections in the application layer.
On a splicing offload request, the host stack hands over
the states of two connections to NIC, and removes their
TCBs from its connection table. The NIC stack takes over
the ownership, and installs two L4 forwarding rules for
relaying packets. The host stack keeps track of the num-
ber of spliced connections offloaded to NIC, and decides
whether to offload more connections by considering the
available memory on NIC.

Figure 7 shows the packet translation process. It sim-
ply swaps the 4-tuples of two connections and translates
the sequence/ACK numbers and TCP/IP checksums of
a packet with pre-calculated offsets. While the Figure
assumes that the proxy does not modify any content,
but one can easily support such a case. For example, if a
proxy modifies request or response headers before splic-
ing, the host stack only needs to reflect the extra delta
in sequence and ACK numbers into the pre-calculated
offsets. One limitation in our current scheme is that the
proxy may not read or modify the packets any more
after splicing offload.
Efficient TCP/IP checksum update: Translating a
packet header requires TCP/IP checksum update. How-
ever, recalculating the TCP checksum is expensive as it
scans the entire packet payload. To avoid the overhead,
AccelTCP adopts differential checksum update, which
exploits the fact that the one’s complement addition is

1
2
3
4
5
6
7
8
9

10

On splicing offload for a flow from IPC(PC) to IPS(PS):
CSOIP IPS + IPC
CSOTCP CSOIP + PS + Pps – PC – Ppc + ΔSEQ+ ΔACK
Store CSOIP and CSOTCP

For any next incoming packets from IPC(PC) to IPS(PS):
Load CSOIP and CSOTCP
CSIP CSIP + CSOIP
CSTCP CSTCP + CSOTCP
If (SEQ #) > (– ΔSEQ), then CSTCP CSTCP – 1
If (ACK #) > (– ΔACK), then CSTCP CSTCP – 1

Figure 8:Differential checksum update. CSO: checksum offset,
CS: checksum. Other notations are in Figure 7. Note that +
and − indicate 1’s complement addition and subtraction.

both associative and distributive. Since only the 4-tuple
of a connection and sequence and ACK numbers are
updated, we only need to add the difference (or offset)
of these values to the checksum. Figure 8 shows the
algorithm. Upon splicing offload request, the NIC stack
pre-calculates the offsets for IP and TCP checksums, re-
spectively (Line 2-4). For each packet for translation, it
adds the offsets to IP and TCP checksums, respectively
(Line 7-8). One corner case arises if a sequence or an
ACK number wraps around. In that case, we need to sub-
tract 1 from the checksum to conform to 1’s complement
addition (Line 9-10).
Tracking teardown state: Since connection splicing
operates by merging two connections into one, the NIC
stack only needs to passively monitor connection tear-
down by the server and the client. When the spliced
connection closes completely or if it is reset by any peer,
the NIC stack removes the forwarding rule entries, and
notifies the host stack of the closure. This allows reusing
TCP ports or tracking connection statistics at the host.

5 AccelTCP Host Stack
The AccelTCP host stack is logically independent of the
NIC stack. While our current implementation is based
on mTCP [41], one can extend any TCP stack to harness
our NIC offloading.

5.1 Socket API Extension
AccelTCP allows easy porting of existing applications
by reusing the epoll()-based POSIX-like socket API of
mTCP. In addition, it extends the API to support flexible
NIC offloading as shown in Figure 9. First, AccelTCP
adds extra socket options to mtcp_setsockopt() to en-
able connection setup and teardown offload to NIC. Note
that the connection teardown offload request is advisory,
so the host stack can decide not to offload the closure
if the conditions are not met (Section §4.2). Second, Ac-
celTCP adds mtcp_nsplice() to initiate splicing two
connections on NIC. The host stack waits until all data

84 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

/* enable/disable setup and teardown offload
- level : IPPPROTO_TCP
- optname: TCP_SETUP_OFFLOAD or TCP_TEARDOWN_OFFLOAD
- optval : 1 (enable) or 0 (disable) */

int mtcp_setsockopt(mctx_t m, int sock, int level, int optname,
void *optval, socklen_t optlen);

/* offload connection splicing of two connections */
int mtcp_nsplice(mctx_t m, int sock_c, int sock_s, callback_t* cb);

/* notified upon a closure of spliced connections */
typedef void (*callback_t)(nsplice_meta_t * meta);

Figure 9: Socket API extension for AccelTCP

in the send buffer are acknowledged while buffering any
incoming packets. Then, it installs forwarding rules onto
NIC, sending the buffered packets after header transla-
tion. After calling this function, the socket descriptors
should be treated as if they are closed in the applica-
tion. Optionally, the application may specify a callback
function to be notified when the spliced connections
finish. Through the callback function, AccelTCP pro-
vides (i) remote addresses of the spliced connections, (ii)
the number of bytes transferred after offloaded to NIC
dataplane, and (iii) how the connections are terminated
(e.g., normal teardown or reset by any peer).

5.2 Host Stack Optimizations
We optimize the host networking stack to accelerate
small message processing. While these optimizations
are orthogonal to NIC offload, they bring a significant
performance benefit to short-lived connections.
Lazy TCB creation: A full TCB of a connection ranges
from 400 to 700 bytes even on recent implementa-
tions [5, 41]. However,we find thatmany of the fields are
unnecessary for short-lived connections whose message
size is smaller than the initial window size. To avoid the
overhead of a large TCB, AccelTCP creates the full TCB
only when multiple transactions are observed. Instead,
the host stack creates a small quasi-TCB (40 bytes) for a
new connection. If the application closes the connection
after a single write, the host stack offloads the teardown
and destroys the quasi-TCB.
Opportunistic zero-copy: Recent high-performance
TCP stacks [30, 61, 68] bypass the socket buffer to avoid
extra memory copying. However, this often freezes the
application-level buffer even after sending data, or over-
flows the host packet buffers if the application does
not read the packets in a timely manner. AccelTCP ad-
dresses this problem by opportunistically performing a
zero-copy I/O. When a stream of packets arrive in order,
the application waiting for a read event will issue a read
call. Then, the content of the packets is copied directly to
the application buffer while any leftover is written to the
receive socket buffer. When an application sends data
on an empty socket buffer, the data is directly written to

the host packet buffer for DMA’ing to NIC. Only when
the host packet buffer is full, the data is written to the
send socket buffer. Our scheme observes the semantics
of standard socket operations, allowing easy porting of
existing applications. Yet, this provides the benefit of
zero-copying to most short-lived connections.
User-level threading: mTCP spawns two kernel-level
threads: a TCP stack thread and an application thread
on each CPU core. While this allows independent op-
erations of the TCP thread (e.g., timer operations), it
incurs a high context switching overhead. To address
the problem, we modify mTCP to use cooperative user-
level threading [13]. We find that this not only reduces
the context switching overhead, but it also allows other
optimizations like lazy TCB creation and opportunistic
zero-copying.

6 Evaluation
We evaluate AccelTCP by answering following ques-
tions. First, does stateful TCP offloading and host stack
optimizations demonstrate a high performance in a va-
riety of workloads? (§6.1) Second, does it deliver the
performance benefit to real-world applications? (§6.2)
Finally, is the extra cost of a smart NIC justifiable? (§6.3)
Experiment setup: Our experimental setup consists
of one server (or a proxy), four clients, and four back-
end servers. The server machine has an Intel Xeon Gold
6142 @ 2.6GHz with 128 GB of DRAM and a dual-port
Netronome Agilio LX 40GbE NIC (NFP-6480 chipset).
Each client has an Intel Xeon E5-2640 v3 @ 2.6GHz,
and back-end servers have a mix of Xeon E5-2699 v4
@ 2.2GHz and Xeon E5-2683 v4 @ 2.1GHz. The client
and backend server machines are configured with Intel
XL710-QDA2 40GbE NICs. All the machines are con-
nected to a Dell Z9100-ON switch, configured to run at
40 GbE speed. For TCP stacks, we compare AccelTCP
against mTCP [41] and IX [30]. All TCP stacks employ
DPDK [10] for kernel-bypass packet I/O. Clients and
back-end servers run mTCP patched to use cooperative
user-level threading as AccelTCP. For IX experiments,
we use two dual-port Intel X520-DA2 10GbE NICs, and
enable all four ports bonded with a L3+L4 hash to bal-
ance the load as IX does not support 40GbE NICs. We
verify that any single 10GbE port does not become the
bottleneck based on port-level statistics at the switch.
Hyperthreading is disabled for mTCP and AccelTCP,
and enabled for IX when it improves the performance.
Our current prototype uses CRC32 to generate SYN

cookies for connection setup. To prevent state explosion
attacks, one needs to use a cryptographic hash function
(such as MD5 or SHA2). Unfortunately, the API sup-

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 85

0.9 1.8
3.4

6.3
3.4

6.1

9.9
13.7

0

5

10

15

20

1 2 3 4 5 6 7 8

T
ra

n
sa

ct
io

n
s/

se
c

(x
1

0
6
)

Number of CPU cores

mTCP (non-persistent) AccelTCP (non-persistent)

mTCP (persistent) IX (persistent)

Figure 10: Throughputs of 64B packet transactions

Action Mtps Speedup
Baseline (w/o NIC offload) 0.89 1.0x
+ Enable setup offload (§4.1) 1.21 1.4x
+ Enable teardown offload (§4.2) 2.06 2.3x

+ Enable opportunistic TCB creation
& opportunistic zero-copy (§5.2) 3.42 3.8x

Table 3: Breakdown of contribution by each optimization on
a single CPU core (64B packet transactions)

port for hardware-assisted cryptographic operations in
Agilio NICs is currently incomplete (for both C and P4
code), so we use CRC32 instead here.

6.1 Microbenchmark
We evaluate AccelTCP’s performance for handling short-
lived TCP connections and L7 proxying, and compare
against the performance of the state-of-the-art TCP
stacks: mTCP [41] and IX [30].

6.1.1 Short-lived Connection Performance
We evaluate the benefit of connection management of-
fload by comparing the performance of TCP echo servers
that perform 64B packet transactions with persistent vs.
non-persistent connections. The TCP echo servers main-
tain 16k concurrent connections, and the performance
results are averaged over one-minute period for five runs
in each experiment. In the non-persistent case, a new
connection is created immediately after every connec-
tion closure. AccelTCP offloads connection setup and
offload to NIC while mTCP handles them using CPU.
For IX, we evaluate only the persistent connection case
as IX experiences a crash when handling thousands of
concurrent connections with normal teardown.
Figure 10 compares the throughputs over varying

numbers of CPU cores. AccelTCP achieves 2.2x to 3.8x
better throughputs than non-persistent mTCP, compa-
rable to those of persistent connections. Surprisingly,
AccelTCP outperforms persistent connections by 13% to
54% for up to four CPU cores. This is because AccelTCP

0.5 0.9 1.7
3.4

6.3

9.3
11.2

1.5
3.0

6.0

11.5

17.0 19.7 19.8

0

5

10

15

20

64 128 256 512 1024 2048 4096

G
o
o
d
p
u
t

(G
b
p
s)

Message size (B)

mTCP AccelTCP

Figure 11: Performance of short-lived connections for varying
message sizes on a single CPU core

17.0
20.8

30.6
36.5 37.9 39.5

23.6

41.1

59.8

80 80 80

0

20

40

60

80

64 128 256 512 1024 1500

T
h

ro
u
g
h
p

u
t

(G
b
p

s)

Packet size (B)

epproxy-mTCP

epproxy-AccelTCP

Figure 12: Comparison of L7 proxying throughputs

benefits from lazy TCB creation (§5.2) while persistent
connections suffer from a CPU bottleneck. However,
its eight-core performance is 22% lower than that of
persistent IX, implying a bottleneck on NIC. Overall,
connection management offload brings a significant per-
formance benefit, which enables short-lived connections
to perform comparably to persistent connections.

Table 3 shows the breakdown of performance in terms
of the contribution by each optimization. We find that
connection setup and teardown offload improve the base-
line performance by 2.3xwhile other host stack optimiza-
tions contribute by extra 1.5x.
Figure 11 compares the goodputs over varying mes-

sage sizes on a single CPU core. AccelTCP maintains the
performance benefit over different message sizes with a
speedup of 2.5x to 3.6x. The performance of messages
larger than one MSS is limited at 20 Gbps, which seems
impacted by our software TSO implementation on NIC.
The current Agilio NIC SDK does not provide an API
to exploit hardware TSO for programmable dataplane.
We believe the single core performance would further
improve with proper hardware support.

6.1.2 Layer-7 Proxing Performance
We now evaluate connection splicing offload with a
simple L7 LB called epproxy that inspects the initial
request, determines a back-end server, and relays the
content between the client and the server. We measure
the wire-level, receive-side throughput (including con-
trol packets) on the client side over different message
sizes. Clients spawn 8k concurrent connections with ep-
proxy, and the proxy creates 8k connections with back-

86 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.5 5.9 6.3 6.5 6.5

11.5
13.6

14.6
15.8 15.8

0

4

8

12

16

20

0 64 128 192 256

T
ra

n
sa

ct
io

n
s/

se
c

(x
1
0

6
)

Number of messages per connection

mTCP AccelTCP

Figure 13: L7 proxying performance over varying numbers
of message transactions per connection with 64B packets

end servers. We confirm that both clients and back-end
servers are not the bottleneck. We configure epproxy-
mTCP to use eight cores while epproxy-AccelTCP uses
only a single core as CPU is not the bottleneck. All con-
nections are persistent, and we employ both ports of the
Agilio LX NIC here. The NIC is connected to the host
via 8 lanes of PCIe-v3 6.

Figure 12 shows that AccelTCP-proxy outperforms
epproxy-mTCP by 1.4x to 2.2x even if the latter employs
8x more CPU cores. We make two observations here.
First, the performance of epproxy-AccelTCP reaches full
80 Gbps from 512-byte messages, which exceeds the
PCIe throughput of the NIC. This is because epproxy-
AccelTCP bypasses host-side DMA and fully utilizes
the forwarding capacity of the NIC. Second, epproxy-
AccelTCP achieves up to twice as large goodput as the
epproxy-mTCP. For example, epproxy-AccelTCP actu-
ally performs 2.8x more transactions per second than
epproxy-mTCP for 64B messages. This is because Ac-
celTCP splices two connections into a single one while
mTCP relays two connections. For each request from a
client, epproxy-mTCP must send an ACK as well as a
response packet from the back-end server. In contrast,
epproxy-AccelTCP replays only the response packet
with a piggybacked ACK from the back-end server.

We move on to see if epproxy-AccelTCP fares well on
non-persistent connections. Figure 13 shows the perfor-
mance over varying numbers of message transactions
per connection. AccelTCP performs 1.8x better at a sin-
gle transaction, and the performance gapwidens as large
as 2.4x at 128 transactions per connection. This confirms
that proxying non-persistent connections also benefit
from splicing offload of AccelTCP.

6.2 Application Benchmark
We investigate if AccelTCP delivers the performance
benefit to real-world applications.
Key-value store (Redis): We evaluate the effective-
ness of AccelTCP with Redis (v.4.0.8) [17], a popular

6Theoretical maximum throughput is 63 Gbps according to [58].

1-core 8-core
Redis-mTCP (kernel thread) 0.19 Mtps 1.38 Mtps
Redis-mTCP (user-level thread) 0.28 Mtps 1.94 Mtps
Redis-AccelTCP 0.44 Mtps 3.06 Mtps

Table 4: Redis performance for short-lived connections

0% 25% 50% 75% 100%

AccelTCP

mTCP (user-level thread)

mTCP (kernel thread)

CPU utilization

TCP/IP Redis session init/destroy Redis request handling

Figure 14: CPU breakdown of Redis on a single CPU core

in-memory key-value store. We use Redis on mTCP as
a baseline server while we port it to use AccelTCP for
comparison. We test with the USR workload from Face-
book [29], which consists of 99.8% GET requests and
0.2% SET requests with short keys (< 20B) and 2B val-
ues. For load generation, we use a Redis client similar to
memtier_benchmark [18] written in mTCP. We config-
ure the Redis server and the clients to perform a single
key-value transaction for each connection to show the
behavior when short-lived connections are dominant.
Table 4 compares the throughputs. Redis-AccelTCP

achieves 1.6x to 2.3x better performance than Redis-
mTCP, and its performance scales well with the number
of CPU cores. Figure 14 shows that mTCP consumes
over a half of CPU cycles on TCP stack operations. In
contrast, AccelTCP saves up to 75% of the CPU cycles for
TCP processing. With AccelTCP, session initialization
and destruction of Redis limits the performance. Our
investigation reveals that the overhead mostly comes
from dynamic memory (de)allocation (zmalloc() and
zfree()) for per-connection metadata, which incurs a
severe penalty for handling short-lived connections.
L7 LB (HAProxy): We see if AccelTCP improves the
performance of HAProxy (v.1.8.0) [6], a widely used
HTTP-based L7 LB. We first port HAProxy to use mTCP
and AccelTCP, respectively, and evaluate the through-
put with the SpecWeb2009[26]-like workload. The work-
load consists of static files whose size ranges from 30
to 5,670 bytes with an average file size of 728 bytes. For
a fair comparison, we disable any header rewriting in
the both version after delivering the first HTTP request.
We spawn 8k persistent connections, using simple epoll-
based clients and back-end servers running on mTCP.
Table 5 compares the throughputs with with 1 core and

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 87

1-core 8-core
HAProxy-mTCP 4.3 Gbps 6.2 Gbps
HAProxy-AccelTCP 73.1 Gbps 73.1 Gbps

Table 5: L7 LB performance for SpecWeb2009-like workload

E5-2650v2 Gold 6142
mTCP (XL710-QDA2) 1.00 1.25
AccelTCP (Agilio LX) 1.93 1.96

Table 6: Comparison of normalized performance-per-dollar

8 cores. HAProxy-AccelTCP achieves 73.1 Gbps, a 11.9x
better throughput than HAProxy-mTCP. The average
response time of HAProxy-AccelTCP is 0.98 ms, 13.6x
lower than that of HAProxy-mTCP. We observe that the
performance benefit is much larger than in Section 6.1.2
because HAProxy has a higher overhead in application-
level request processing and packet relaying.

6.3 Cost-effectiveness Analysis
AccelTCP requires a smart NIC, which is about 3-4x
more expensive than a normal NIC at the moment. For
fairness, we try comparing the cost effectiveness by
the performance-per-dollar metric. We draw hardware
prices from Intel [11] and Colfax [4] pages (as of August
2019), and use the performance of 64B packet transac-
tions on short-lived connections. Specifically, we com-
pare the performance-per-dollar with a system that runs
mTCP with a commodity NIC (Intel XL710-QDA2, $440)
vs. another system that runs AccelTCP with a smart
NIC (Agilio LX, $1,750). For CPU, we consider Xeon
E5-2650v2 ($1,170) and Xeon Gold 6142 ($2,950). For
simplicity, we only consider CPU and NIC as hardware
cost. Table 6 suggests that NIC offload with AccelTCP
is 1.6x to 1.9x more cost-effective, and the gap would
widen further if we add other fixed hardware costs.

7 Related Work
Kernel-bypass TCP stacks: Modern kernel-bypass
TCP stacks such as mTCP [41], IX [30], SandStorm [55],
F-Stack [5] deliver high-performance TCP processing of
small message transactions. Most of them employ a fast
user-level packet I/O [10], and exploit high parallelism
on multicore systems by flow steering on NIC. More
recently, systems like ZygOS [63], Shinjuku [42], and
Shenango [59] further improve kernel-bypass stack by
reducing the tail latency, employing techniques like task
stealing, centralized packet distribution, and dynamic
core reallocation. We believe that these works are largely
orthogonal but complementary to ourwork as AccelTCP
would enhance these stacks by offloading connection
management tasks to NIC.

NIC offload: Existing TCP offloads mostly focus on
improving large message transfer either by offloading
the whole TCP stack [50] or by selectively offloading
common send-receive operations [46]. In contrast, our
work focuses on connection management and proxying
whose performance is often critical to modern network
workloads, while we intentionally avoid the complexity
of application data transfer offloading. UNO [52] and
Metron [45] strive to achieve optimal network function
(NF) performance with NIC offload based on runtime
traffic statistics. We plan to explore dynamic offloading
of a subset of networking stack features (or connections)
in response to varying load in the future. To offload TCP
connection management, any L2-L4 NFs that should run
prior to TCP stack (e.g., firewalling or host networking)
must be offloaded to NIC accordingly. Such NFs can
be written in P4 [40, 45, 56] and easily integrated with
AccelTCP by properly placing them at ingress/egress
pipelines of the NIC dataplane.
L7 proxing and short RPCs: Our connection splicing
is inspired by the packet tunneling mechanism of Yoda
L7 LB [36]. However, Yoda operates as a packet-level
translator without a TCP stack, so it cannot modify any
of relayed content. In contrast, an AccelTCP application
can initiate the offload after any content modification.
Also, AccelTCP packet translation runs on NIC hard-
ware, promising better performance. Finally, we note
that eRPC [44] achieves 5.0 Mtps RPC performance (vs.
3.4 Mtps of AccelTCP) on a single core. However, ePRC
is limited to data center environments while AccelTCP is
compatible to TCP and accommodates any TCP clients.

8 Conclusion
In this paper, we have presented AccelTCP that har-
nesses modern programmable NICs as a TCP protocol
accelerator. Drawing the lessons from full stack TOE,Ac-
celTCP’s design focuses on minimizing the interaction
with the host stack by offloading only select features of
stateful TCP operations. AccelTCP manages the com-
plexity on NIC by stateless handshake, single ownership
of a TCB, and conditional teardown offload. In addi-
tion, it simplifies connection splicing by efficient packet
header translation. We have also presented a number of
optimizations that significantly improve the host stack.
We have demonstrated that AccelTCP brings a sub-

stantial performance boost to short-message transac-
tions and L7 proxying. AccelTCP delivers a 2.3x speedup
to Redis on a kernel-bypass stack while it improves the
performance of HAProxy by a factor of 11.9. AccelTCP
is available at https://github.com/acceltcp, and
we hope our effort will renew the interest in selective
NIC offload of stateful TCP operations.

88 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/acceltcp

Acknowledgments
We would like to thank our shepherd Andrew Moore
and anonymous reviewers of NSDI 2020 for their in-
sightful comments and feedback on the paper. We also
thank Ilwoo Park for applying user-level threading to
the mTCP stack. This work was supported by Institute
of Information & Communications Technology Plan-
ning & Evaluation (IITP) grants funded by the Korea
government (MSIT) (2018-0-00693, Development of an
ultra low-latency user-level transfer protocol and 2016-
0-00563, Research on Adaptive Machine Learning Tech-
nology Development for Intelligent Autonomous Digital
Companion) as well as the SK-Hynix grant for Storage
Media Solutions Center.

Appendix A. Host-NIC Communication Interface
The host and NIC stacks communicate with each other
by piggybacking control information in the normal pack-
ets most time. It encodes the type of offload as unused
EtherType values in the Ethernet header, and tags along
other information in the special header between the
Ethernet and IP headers.
Connection setup: When an application listens on a
socket whose setup offload option is enabled, the host
stack sends a special control packet to NIC, carrying the
listening address/port and TCP options that must be de-
livered to the remote host during connection setup (e.g.,
MSS, Window scale factor, Selective ACK, etc.). To no-
tify a new connection, the NIC stack sets the Ethertype
of the ACK packet to 0x090A, and delivers the negoti-
ated options in the TCP Timestamps option. The host
stack extracts only the TCP options, and ignores the
NIC-generated timestamp value.
Connection teardown: For teardown offload, the host
stack creates a TSO packet that holds all remaining data
in the send buffer, and sets the EtherType to 0x090B. It
also encodes other information such as MSS (2 bytes),
current RTO (4 bytes), and current TCP state (2 bytes)
in the special header area. The NIC stack notifies the
host stack of the number of connections being closed
on NIC by either sending a control packet or tagging at
any packet delivered to host.
Connection splicing: For splicing offload, the host
stack uses 0x090C as EtherType, andwrites the sequence
and ACK number offsets (4 bytes each), and a 4-tuple of
a connection in the special header. When the splicing
offload packet is passed to the NIC stack, a race condi-
tion may arise if some packets in the flows are passed
up to the host stack at the same time. To ensure correct
forwarding, the host stack keeps the connection entries
until it is notified that the splicing rules are installed at

NIC. For reporting a closure of spliced connections, NIC
creates a special control packet holding the connection
information and traffic statistics with the EtherType,
0x090D, and sends it up to the host stack. By monitoring
those control packets, the host stack can keep track of
the number of active spliced connections on NIC.

References

[1] Agilio® LX 2x40GbE SmartNIC. https:
//www.netronome.com/m/documents/PB_
Agilio_LX_2x40GbE.pdf. Accessed: 2019-08-27.

[2] Amazon API Gateway. https://aws.amazon.
com/api-gateway/. Accessed: 2019-08-27.

[3] Cavium LiquidIO® II Network Appliance Smart
NIC. https://www.marvell.com/documents/
konmn48108xfxalr96jk/. Accessed: 2019-08-27.

[4] Colfax Direct. https://colfaxdirect.com. Ac-
cessed: 2019-08-27.

[5] F-Stack | High Performance Network Framework
Based on DPDK. http://www.f-stack.org/.
Accessed: 2019-08-27.

[6] HAProxy: The Reliable, High Perfor-
mance TCP/HTTP Load Balancer. http:
//www.haproxy.org/. Accessed: 2019-08-27.

[7] IEEE 802.1Qau – Congestion Notification. https:
//1.ieee802.org/dcb/802-1qau/. Accessed:
2019-08-27.

[8] IEEE 802.1Qbb - Priority-based Flow Control.
https://1.ieee802.org/dcb/802-1qbb/. Ac-
cessed: 2019-08-27.

[9] Improving Syncookies. https://lwn.net/
Articles/277146/. Accessed: 2019-08-27.

[10] Intel DPDK: Data Plane Development Kit. http:
//dpdk.org/. Accessed: 2019-08-27.

[11] Intel Product Specification. https://ark.intel.
com. Accessed: 2019-08-27.

[12] Linux and TCP Offload Engines. https://lwn.
net/Articles/148697/. Accessed: 2019-08-27.

[13] lthread: Multicore / Multithread Coroutine Library.
https://lthread.readthedocs.io. Accessed:
2019-08-27.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 89

https://www.netronome.com/m/documents/PB_Agilio_LX_2x40GbE.pdf
https://www.netronome.com/m/documents/PB_Agilio_LX_2x40GbE.pdf
https://www.netronome.com/m/documents/PB_Agilio_LX_2x40GbE.pdf
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://www.marvell.com/documents/konmn48108xfxalr96jk/
https://www.marvell.com/documents/konmn48108xfxalr96jk/
https://colfaxdirect.com
http://www.f-stack.org/
http://www.haproxy.org/
http://www.haproxy.org/
https://1.ieee802.org/dcb/802-1qau/
https://1.ieee802.org/dcb/802-1qau/
https://1.ieee802.org/dcb/802-1qbb/
https://lwn.net/Articles/277146/
https://lwn.net/Articles/277146/
http://dpdk.org/
http://dpdk.org/
https://ark.intel.com
https://ark.intel.com
https://lwn.net/Articles/148697/
https://lwn.net/Articles/148697/
https://lthread.readthedocs.io

[14] Mellanox BlueField™ SmartNIC. http:
//www.mellanox.com/related-docs/prod_
adapter_cards/PB_BlueField_Smart_NIC.
pdf. Accessed: 2019-08-27.

[15] Microsoft Windows Scalable Network-
ing Initiative. http://download.
microsoft.com/download/5/b/5/
5b5bec17-ea71-4653-9539-204a672f11cf/
scale.doc. Accessed: 2019-08-27.

[16] Open vSwitchOffload andAcceleration withAgilio
SmartNICs. https://www.netronome.com/m/
redactor_files/WP_OVS_Benchmarking.pdf.
Accessed: 2019-08-27.

[17] Redis. https://redis.io/. Accessed: 2019-08-
27.

[18] RedisLabs/memtier_benchmark: NoSQL Redis and
Memcache traffic generation and benchmark-
ing tool. https://github.com/RedisLabs/
memtier_benchmark. Accessed: 2019-08-27.

[19] RFC 2663. https://tools.ietf.org/html/
rfc2663. Accessed: 2019-08-27.

[20] RFC 4987. https://tools.ietf.org/html/
rfc4987. Accessed: 2019-08-27.

[21] RFC 6928. https://tools.ietf.org/html/
rfc6928. Accessed: 2019-08-27.

[22] RFC 7323. https://tools.ietf.org/html/
rfc7323. Accessed: 2019-08-27.

[23] RFC 791. https://tools.ietf.org/html/
rfc791. Accessed: 2019-08-27.

[24] RFC 793. https://tools.ietf.org/html/
rfc793. Accessed: 2019-08-27.

[25] Solarflare SFA7942Q with Stratix V A7 FPGA.
https://solarflare.com/wp-content/
uploads/2018/11/SF-114649-CD-LATEST_
Solarflare_AOE_SFA7942Q_Product_Brief.
pdf. Accessed: 2019-08-27.

[26] SpecWeb2009 Benchmark. https://www.spec.
org/web2009/. Accessed: 2019-08-27.

[27] Why Are We Deprecating Network
Performance Features (KB4014193)?
https://blogs.technet.microsoft.com/
askpfeplat/2017/06/13/. Accessed: 2019-08-
27.

[28] Why persistent connections are bad.
https://meta.wikimedia.org/wiki/Why_
persistent_connections_are_bad#Why_
persistent_connections_are_bad. Accessed:
2019-08-27.

[29] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg,
Song Jiang, and Mike Paleczny. Workload Analysis
of a Large-scale Key-value Store. In ACM SIGMET-
RICS Performance Evaluation Review, volume 40,
pages 53–64. ACM, 2012.

[30] Adam Belay, George Prekas, Mia Primorac, Ana
Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. The IX Operating System:
Combining Low Latency, High Throughput, and
Efficiency in a Protected Dataplane. ACM Transac-
tions on Computer Systems (TOCS), 34(4):11, 2017.

[31] Theophilus Benson, Aditya Akella, and David A.
Maltz. Network Traffic Characteristics of Data
Centers in the Wild. In Proceedings of the 2010
ACM Internet Measurement Conference (IMC ’10),
2010.

[32] Theophilus Benson, Aditya Akella, and David A
Maltz. Network Traffic Characteristics of Data
Centers in the Wild. In Proceedings of the 10th
ACM SIGCOMM conference on Internet measure-
ment (IMC ’10), 2010.

[33] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, et al.
P4: Programming Protocol-Independent Packet
Processors. ACM SIGCOMM Computer Commu-
nication Review, 44(3):87–95, 2014.

[34] Hsin-Chieh Chiang, Yuan-Pang Dai, and Chuei-Yu
Wang. Full Hardware Based TCP/IP Traffic Offload
Engine (TOE) Device and the Method Thereof, Jan-
uary 12 2010. US Patent 7,647,416.

[35] Douglas Freimuth, Elbert C Hu, Jason D LaVoie,
Ronald Mraz, Erich M Nahum, Prashant Pradhan,
and JohnM Tracey. Server Network Scalability and
TCP Offload. In Proceedings of the 2015 USENIX
Annual Technical Conference (ATC ’05), 2005.

[36] Rohan Gandhi, Y. Charlie Hu, and Ming Zhang.
Yoda: A Highly Available Layer-7 Load Balancer.
In Proceedings of the 11th European Conference on
Computer Systems (EuroSys ’16), 2016.

90 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://download.microsoft.com/download/5/b/5/5b5bec17-ea71-4653-9539-204a672f11cf/scale.doc
http://download.microsoft.com/download/5/b/5/5b5bec17-ea71-4653-9539-204a672f11cf/scale.doc
http://download.microsoft.com/download/5/b/5/5b5bec17-ea71-4653-9539-204a672f11cf/scale.doc
http://download.microsoft.com/download/5/b/5/5b5bec17-ea71-4653-9539-204a672f11cf/scale.doc
https://www.netronome.com/m/redactor_files/WP_OVS_Benchmarking.pdf
https://www.netronome.com/m/redactor_files/WP_OVS_Benchmarking.pdf
https://redis.io/
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://tools.ietf.org/html/rfc2663
https://tools.ietf.org/html/rfc2663
https://tools.ietf.org/html/rfc4987
https://tools.ietf.org/html/rfc4987
https://tools.ietf.org/html/rfc6928
https://tools.ietf.org/html/rfc6928
https://tools.ietf.org/html/rfc7323
https://tools.ietf.org/html/rfc7323
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://solarflare.com/wp-content/uploads/2018/11/SF-114649-CD-LATEST_Solarflare_AOE_SFA7942Q_Product_Brief.pdf
https://solarflare.com/wp-content/uploads/2018/11/SF-114649-CD-LATEST_Solarflare_AOE_SFA7942Q_Product_Brief.pdf
https://solarflare.com/wp-content/uploads/2018/11/SF-114649-CD-LATEST_Solarflare_AOE_SFA7942Q_Product_Brief.pdf
https://solarflare.com/wp-content/uploads/2018/11/SF-114649-CD-LATEST_Solarflare_AOE_SFA7942Q_Product_Brief.pdf
https://www.spec.org/web2009/
https://www.spec.org/web2009/
https://blogs.technet.microsoft.com/askpfeplat/2017/06/13/
https://blogs.technet.microsoft.com/askpfeplat/2017/06/13/
https://meta.wikimedia.org/wiki/Why_persistent_connections_are_bad#Why_persistent_connections_are_bad
https://meta.wikimedia.org/wiki/Why_persistent_connections_are_bad#Why_persistent_connections_are_bad
https://meta.wikimedia.org/wiki/Why_persistent_connections_are_bad#Why_persistent_connections_are_bad

[37] Chuanxiong Guo, HaitaoWu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
RDMA over Commodity Ethernet at Scale. In Pro-
ceedings of the 2016 ACM SIGCOMM Conference
(SIGCOMM ’16), 2016.

[38] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue
Moon. PacketShader: A GPU-Accelerated Software
Router. In Proceedings of the 2010 ACM SIGCOMM
Conference (SIGCOMM ’10), 2010.

[39] Sangjin Han, ScottMarshall, Byung-Gon Chun, and
Sylvia Ratnasamy. MegaPipe: ANewProgramming
Interface for Scalable Network I/O. In Proceedings
of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI’12), 2012.

[40] David Hancock and Jacobus Van der Merwe. Hy-
per4: Using P4 to Virtualize the Programmable
Data Plane. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments
and Technologies (CoNEXT ’16), 2016.

[41] EunYoung Jeong, Shinae Woo, Muhammad Asim
Jamshed, Haewon Jeong, Sunghwan Ihm, Dongsu
Han, and KyoungSoo Park. mTCP: a Highly Scal-
able User-level TCP Stack forMulticore Systems. In
Proceedings of the 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
’14), 2014.

[42] Kostis Kaffes, Timothy Chong, Jack Tigar
Humphries, Adam Belay, David Mazières, and
Christos Kozyrakis. Shinjuku: Preemptive
Scheduling for 𝜇second-scale Tail Latency. In
Proceedings of the 16th USENIX Symposium on
Networked Systems Design and Implementation
(NSDI ’19), 2019.

[43] Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. FaSST: Fast, Scalable and Simple Distributed
Transactions with Two-Sided RDMA Datagram
RPCs. In Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI ’16), 2016.

[44] Anuj Kalia,Michael Kaminsky, andDavid G. Ander-
sen. Datacenter RPCs can be General and Fast. In
Proceedings of the 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
’19), 2019.

[45] Georgios P Katsikas, Tom Barbette, Dejan Kostic,
Rebecca Steinert, and Gerald QMaguire Jr. Metron:

NFV Service Chains at the True Speed of the Un-
derlying Hardware. In Proceedings of the 15th Sym-
posium on Networked Systems Design and Imple-
mentation (NSDI ’18), 2018.

[46] Antoine Kaufmann. Efficient, Secure, and Flexible
High Speed Packet Processing for Data Centers. In
PhD Thesis, University of Washington, 2018.

[47] Antoine Kaufmann, Simon Peter, Naveen Kr.
Sharma, Thomas E. Anderson, and Arvind Krish-
namurthy. High performance packet processing
with flexnic. In Proceedings of the 21st International
Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS
’16), 2016.

[48] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr. Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP Acceleration as an
OS Service. In Proceedings of the 14th European Con-
ference on Computer Systems (EuroSys ’19), 2019.

[49] Jakub Kicinski and Nicolaas Viljoen. eBPF Hard-
ware Offload to SmartNICs: cls bpf and XDP. Pro-
ceedings of Netdev 1.2, The Technical Conference on
Linux Networking, 1, 2016.

[50] Hyong-youb Kim and Scott Rixner. Connection
Handoff Policies for TCP Offload Network Inter-
faces. In Proceedings of the 7th Symposium on Op-
erating Systems Design and Implementation (OSDI
’06), 2006.

[51] Mirja Kühlewind, Sebastian Neuner, and Brian
Trammell. On the state of ECN and TCP options on
the Internet. In Proceedings of the 14th Passive and
Active Measurement Conference (PAM ’13), 2013.

[52] Yanfang Le, Hyunseok Chang, Sarit Mukherjee,
Limin Wang, Aditya Akella, Michael M Swift, and
TV Lakshman. UNO: Uniflying Host and Smart
NIC Offload for Flexible Packet Processing. In Pro-
ceedings of the 8th ACM Symposium on Cloud Com-
puting (SoCC ’17), 2017.

[53] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuan-
wei Lu, Yongqiang Xiong, Andrew Putnam, En-
hong Chen, and Lintao Zhang. KV-Direct: High-
Performance In-Memory Key-Value Store with Pro-
grammable NIC. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (SOSP ’17),
2017.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 91

[54] Gregor Maier, Anja Feldmann, Vern Paxson, and
Mark Allman. On Dominant Characteristics of Res-
idential Broadband Internet Traffic. In Proceedings
of the 2009 ACM Internet Measurement Conference
(IMC ’09), 2009.

[55] Ilias Marinos, Robert NMWatson, and Mark Hand-
ley. Network Stack Specialization for Performance.
ACM SIGCOMM Computer Communication Review,
44(4):175–186, 2014.

[56] Rui Miao, Hongyi Zeng, Changhoon Kim,
Jeongkeun Lee, and Minlan Yu. SilkRoad: Making
Stateful Layer-4 Load Balancing Fast and Cheap
Using Switching ASICs. In Proceedings of the 2017
ACM SIGCOMM Conference (SIGCOMM ’17), 2017.

[57] Jeffrey C Mogul. TCP Offload Is a Dumb Idea
Whose Time Has Come. In Proceedings of the 9th
Workshop on Hot Topics in Operating Systems (Ho-
tOS ’03), 2003.

[58] Rolf Neugebauer, Gianni Antichi, José Fernando
Zazo, Yury Audzevich, Sergio López-Buedo, and
Andrew W. Moore. Understanding pcie perfor-
mance for end host networking. In Proceedings of
the 2018 ACM SIGCOMM Conference (SIGCOMM
’18), 2018.

[59] Amy Ousterhout, Joshua Fried, Jonathan Behrens,
Adam Belay, and Hari Balakrishnan. Shenango:
Achieving High CPU Efficiency for Latency-
sensitive Datacenter Workloads. In 16th USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI ’19), 2019.

[60] Aleksey Pesterev, Jacob Strauss,Nickolai Zeldovich,
and Robert T. Morris. Improving Network Connec-
tion Locality on Multicore Systems. In Proceedings
of the 7th European Conference on Computer Sys-
tems (EuroSys ’12), 2012.

[61] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports,
Doug Woos, Arvind Krishnamurthy, Thomas An-
derson, and Timothy Roscoe. Arrakis: The Operat-
ing System Is the Control Plane. ACM Transactions
on Computer Systems (TOCS), 33(4):11, 2016.

[62] Ben Pfaff, Justin Pettit, TeemuKoponen,Ethan Jack-
son,Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Joe Stringer, Pravin Shelar, et al. The De-
sign and Implementation of Open vSwitch. In Pro-
ceedings of the 12th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI
’15), 2015.

[63] George Prekas, Marios Kogias, and Edouard
Bugnion. ZygOS: Achieving Low Tail Latency for
Microsecond-scale Networked Tasks. In Proceed-
ings of the 26th Symposium on Operating Systems
Principles (SOSP ’17), 2017.

[64] Lin Quan and John Heidemann. On the Character-
istics and Reasons of Long-lived Internet Flows. In
Proceedings of the 2010 ACM Internet Measurement
Conference (IMC ’10), 2010.

[65] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George
Porter, and Alex C. Snoeren. Inside the Social Net-
work’s (Datacenter) Network. In Proceedings of the
2015 ACM SIGCOMM Conference (SIGCOMM ’15),
2015.

[66] Shinae Woo, Eunyoung Jeong, Shinjo Park, Jong-
min Lee, Sunghwan Ihm, and KyoungSoo Park.
Comparison of Caching Strategies in Modern Cel-
lular Backhaul Networks. In Proceedings of the
11th International Conference on Mobile Systems,
Applications, and Services (MobiSys’13), 2013.

[67] Zhong-Zhen Wu and Han-Chiang Chen. Design
and Implementation of TCP/IP Offload Engine Sys-
tem over Gigabit Ethernet. In Proceedings of the
15th International Conference on Computer Commu-
nications and Networks. IEEE, 2006.

[68] Kenichi Yasukata, Michio Honda, Douglas Santry,
and Lars Eggert. StackMap: Low-Latency Network-
ing with the OS Stack and Dedicated NICs. In
Proceedings of the 2016 USENIX Annual Technical
Conference (ATC ’16), 2016.

[69] Tao Zhang, Jianxin Wang, Jiawei Huang, Jianer
Chen, Yi Pan, and Geyong Min. Tuning the
Aggressive TCP Behavior for Highly Concurrent
HTTP Connections in Intra-datacenter. IEEE/ACM
Transactions on Networking (TON), 25(6):3808–3822,
2017.

[70] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanx-
iong Guo, Marina Lipshteyn, Yehonatan Liron, Ji-
tendra Padhye, Shachar Raindel, Mohamad Haj
Yahia, and Ming Zhang. Congestion Control for
Large-Scale RDMA Deployments. ACM SIGCOMM
Computer Communication Review, 45(4):523–536,
2015.

92 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background and Motivation
	TCP Overhead in Short Connections & L7 Proxying
	NIC Offload of TCP Features
	Smart NIC for Stateful Offload

	AccelTCP Design Rationale
	AccelTCP NIC Dataplane
	Connection Setup Offload
	Connection Teardown Offload
	Connection Splicing Offload

	AccelTCP Host Stack
	Socket API Extension
	Host Stack Optimizations

	Evaluation
	Microbenchmark
	Short-lived Connection Performance
	Layer-7 Proxing Performance

	Application Benchmark
	Cost-effectiveness Analysis

	Related Work
	Conclusion

