Semantic-driven Phoneme Discovery with Information Bottleneck

- ECE 590SIP

Liming Wang

Mar.17th, 2021

Problem Formulation

Method

Experiments

- **Why discovering phonemes**: A reliable phoneme set can:
 - provide a efficient, low-cost representation to low-resource languages
 - benefit speech processing systems for tasks such as speech recognition, speech synthesis and spoken language understanding
- ▶ **Frame**: A sequence of fixed-length consecutive chunk of speech
- ► **Segment**: A sequence of consecutive speech frames; often variable-length
- ▶ **Phoneme**: A set of minimal-length speech segments such that:
 - ▶ For any phoneme \mathcal{X} and segments $x_1, x_2 \in \mathcal{X}$, substitute x_1 with x_2 in a sentence has no effect on its meaning
 - For any two distinct phonemes $\mathcal{X}_1, \mathcal{X}_2$ and segments $x_1 \in \mathcal{X}_1, x_2 \in \mathcal{X}_2$, substitute x_1 with x_2 in a sentence alter its meaning
 - ▶ Allophone: Any subset of segments $U \in \mathcal{X}$ for a phoneme \mathcal{X}

Problem Formulation

Method

Experiments

Unsupervised vs weakly supervised phoneme discovery

- Unsupervised phone unit discovery:
 - Input: speech feature frames $x = x_1, \dots, x_T$;
 - Output: the phone cluster assignment $z = z_1, \dots, z_T$
- Weakly supervised phoneme discovery:
 - Inputs: speech feature frames $x = (x_1, \dots, x_T)$ and semantic context $y = (y_1, \dots, y_L)$
 - Outputs: same as the unsupervised approach

Figure: Unsupervised phone unit discovery

Figure: Weakly supervised phone unit discovery

A distributional view of phonemes

- ► Issues with unsupervised models: Mostly bottom-up, acoustic-driven⇒unable to distinguish between allophones and phonemes⇒large number of redundant clusters
- Advantage of weakly supervised model:
 - ▶ Will not separate allophones, less redundant clusters
 - Phoneme defined both by its acoustic properties and its semantic context, Closer to the definition of phoneme

Figure: Distributional representation of the phoneme /ai/ using images

Information bottleneck (IB)

- ► Fundamental tradeoff in learning:
 - Performance: e.g., accuracy, distortion/fidelity metrics, reward
 - ▶ Resources: e.g., memory, space, time, energy, material, money
- Mutual information:

$$I(X;Y) := \int_{\mathcal{X},\mathcal{Y}} p_{X,Y}(x,y) \log \frac{p_{XY}(x,y)}{p_X(x)p_Y(y)} dxdy$$
, a nonnegative quantity to measure the amount of information shared by two random variables X and Y with joint distribution $p_{X,Y}$ and marginals p_X, p_Y

▶ Information bottleneck principle (Tishby et al. (1999)): Achieve the highest prediction performance with the lowest amount of information

min
$$I(Z; X)$$
 s.t. $I(Z; Y) \ge R$

- X: Source variable containing all the information resources we have;
- Y: Target variable to predict for a given task;
- ▶ Z: Bottleneck variable containing information from X relevant to predict Y, i.e., form Markov chain Z X Y;
- ▶ $I(X; Z) \approx$ the amount of information taken by Z from X;
- ▶ $I(Z; Y) \approx$ how accurate can Z predict Y
- \triangleright R: Lower bound on the performance, $\leq I(X; Y)$

Phonemes as information bottleneck

- Information bottleneck for sequential data:
 - ▶ $X_{1:T} \in \mathcal{X}^T = (X_1, \dots, X_T)$: Speech feature frames;
 - $ightharpoonup Z_{1:T} \in \mathcal{Z}^T = (Z_1, \cdots, Z_T)$: Framewise (latent) phoneme labels;
 - ▶ $Y_{1:L} \in \mathcal{Y}^L = (Y_1, \cdots, Y_L)$: Semantic contexts such as nearby frames, allophone segments and images
- Phonemes $Z_{1:T}$ contains all semantic information from X, $\Rightarrow I(Z_{1:T}; Y_{1:L}) = I(X_{1:T}; Y_{1:L});$
- Any representation $Z'_{1:T}$ with less information will inevitably confuse at least one pair of distinct semantic contexts $(Y, Y') \Rightarrow I(Z_{1:T}; X_{1:T})$ is minimal
- ► General IB objective for phoneme discovery:

$$\begin{aligned} & \min_{Z_{1:T} - X_{1:T} - Y_{1:L}} & I(Z_{1:T}; X_{1:T}) \\ & \text{s.t.} & I(Z_{1:T}; Y_{1:L}) = I(X_{1:T}; Y_{1:L}) \end{aligned}$$

Problem Formulation

Method

Experiments

Learning algorithm for IB-based phoneme discovery

Challenges

- ▶ $|\mathcal{Z}|^T$ possible combinations of phoneme sequence in a sentence $\Rightarrow I(Z_{1:T}; Y_{1:L})$ intractable in general
- ▶ $O(T^2)$ possible phoneme boundaries $\Rightarrow I(X_{1:T}; Z_{1:T})$ hard to compute

Naive IB-based phoneme model

- ▶ Decoupling of Z_t 's: Z_t 's are independent given $X_{1:T}$;
- ▶ Decoupling of X_t 's: Z_t is independent of $\{X_s\}_{s\neq t}$ given X_t ;
- ▶ Decoupling of Y_i 's: Y_i 's are independent given $Z_{1:T}$;
- ▶ Replica assumption of Y_i 's: One replica $Y_{1:L}^{(t)}$ of $Y_{1:L}$ for each t, with $Y_{1:L}^{(t)}$ independent of $\{(Z_s, Y_{1:L}^{(s)})\}_{s\neq t}$ given Z_t

Naive IB model

Variational IB (VIB) training objective

Let $\beta(R)$ be the Lagrangian multiplier of the VIB at rate R:

$$\begin{split} \min_{I(Z_{1:T};Y_{1:L}) \geq R} I(Z_{1:T};X_{1:T}) &=: \min_{\sum_{i} I(Z_{t};Y_{i}) \geq R} \sum_{t} H(Z_{t}) - H(Z_{t}|X_{t}) \\ &=: \min \mathbb{E}_{x,y} [\sum_{t} \sum_{z_{t}} q_{t}(z_{t}|x_{1:T}) \log \frac{q_{t}(z_{t}|x_{1:T})}{r(z_{t})} - \\ \beta(R) \sum_{t,i} \sum_{z_{t}} q_{t}(z_{t}|x_{1:T}) \log \frac{q_{ti}(y_{i}|z_{t})}{p(y_{i})})] + C &=: L_{IB}, \end{split}$$

Model parameters

- ▶ $q_{ti}(y|z)$: Probability of predicting the *i*-th semantic context to be *y* given the *t*-th phoneme is *z*;
- ightharpoonup r(z): Prior probability of phoneme z

Naive IB model

Interpretation of β

- ▶ Higher performance requirement $R \Rightarrow$ higher $\beta(R) \Rightarrow$ more information taken from speech $X_{1:T}$
- ▶ Optimal β for phoneme discovery when $R = I(X_{1:T}; Y_{1:L})$

Decoding

Maximum a posteriori (MAP) decoding:

$$z_t^* = \max_{z} p(z|x_t, y_{1:L})$$
$$= \max_{z} q_t(z|x_t), t = 1, \dots, T,$$

by conditional independence between Z_t , $Y_{1:L}$ given X_t .

Naive IB model: Architecture for discrete target variable

▶ Bottleneck layer: Samples (one-hot representation of z_t 's) from $q_t(z_t|x_{1:T})$ with Gumbel softmax trick: Let $b_{tz} := \log q_t(z_t|x)$,

$$egin{aligned} z_t &= rg \max_{z} (b_{tz} + g_{tz}) \ &\Rightarrow & \operatorname{onehot}_{z}(z_t) pprox rac{\exp\left(rac{b_{tz} + g_{tz}}{ au}
ight)}{\sum_{z'} \exp\left(rac{b_{tz'} + g_{tz'}}{ au}
ight)}, \end{aligned}$$

where $g_{tz} = -\log(-\log u_{tz})$'s are Gumbel random variables for standard uniform random variable u_{tz} 's

► Target predictor: A lookup table E with weight e_{zy} to be the logit of $q(y_i = y|z_t = z)$

Figure: Naive deep variational IB Model

Naive IB model: Architecture for continuous target variable

- ▶ Predictor: Replace logits with a continuous codebook *E*
- ► $I(Z; Y) \approx \mathbb{E}_{x,y} \sum_{t=1}^{T} \sum_{z_t \sim q(z_t | x_{1:T})} \log \frac{\exp(s(e_{z_t}, y))}{\sum_{y'} \exp(s(e_{z_t}, y'))} + C =$

 $\mathbb{E}_{\mathsf{x},\mathsf{y}}\log\frac{\exp(\sum_{t=1}^{T}\sum_{z_{t}\sim q(z_{t}\mid x_{1}:T)}s(e_{z_{t}},y))}{\sum_{y'}\exp(\sum_{t=1}^{T}\sum_{z_{t}\sim q(z_{t}\mid x_{1}:T)}s(e_{z_{t}},y'))}\text{ , for negative samples }y'\text{'s}$

Figure: Naive IB Model for continuous Y

Naive IB model: Alternative model with vector quantization (van den Oord et al. (2017))

- Replace the Gumbel softmax layer with:
 - 1. An encoder $e: \mathcal{X} \mapsto \mathbb{R}^D$
 - 2. A codebook: $E \in \mathbb{R}^{D \times K} = [e_1, \dots, e_K]$
 - 3. A distance metric: $d(\cdot, \cdot)$, typically L2 squared distance
 - 4. A quantizer: $z : \mathbb{R}^D \mapsto \{1, \dots, K\}$, a deterministic mapping from x to a phoneme unit index whose corresponding vector is closest to x in the embedding space, i.e., $z(x) = \arg\min_z d(e(x), e_z)$
- Phoneme posterior:

$$q_t(z|\mathsf{x}) := \frac{\exp(-d(e_t(\mathsf{x}), e_z))}{\sum_{z'} \exp(-d(e_t(\mathsf{x}), e_z))}$$

Vector quantization loss:

$$L_{VQ}(\theta) = \mathbb{E}_{\mathbf{x}}[\sum_{t=1}^{T} d(e_t(\mathbf{x}), e_{z_t(\mathbf{x})})]$$

 $L = L_{IB} + L_{VQ}(\theta)$

Beyond Naive IB model

Limitations of Naive IB model

- 1. Oversimplified relations between phonemes and its semantic context
- 2. Not modeling inter-dependencies between phonemes

Incoporating phonotactics: Bag-of-phone IB model

▶ Modified IB objective: Prediction for future speech features within a window of k_{max}

$$\begin{aligned} & \min \quad & \sum_{t=1}^{T} I(Z_t; X_t) \\ & \text{s.t.} \quad & \sum_{t=1}^{T} I(Z_t; Y_i^{(t)}) \geq R_Y, \ \sum_{t=1}^{T-k} I(Z_t; X_{t+k}) \geq R_k, \\ & k = 1, \cdots, k_{\text{max}} \end{aligned}$$

Bag-of-phone IB model: Architecture

- Phonotactic predictor: use contrastive predictive coding (CPC) (van den Oord et al.) and its variants
- ▶ $I(Z; X_k) \approx \mathbb{E}_{x,y} \sum_{t=1}^{T-k_{\text{max}}} \sum_{k=1}^{k_{\text{max}}} \log \frac{\exp(s(c_t, x_{t+k}))}{\sum_{n \in \mathcal{N}_t} \exp(s(c_t, n))} + C$, with some sets of negative samples \mathcal{N}_t 's

Figure: IB+CPC Model

Problem Formulation

Method

Experiments

Experimental setting: Weakly supervised phoneme discovery

Dataset

MSCOCO2k: 12500 isolated words with paired images for 65 visual concepts from validation set of SpeechCOCO dataset, 200 instances per concept, 10000/2500 train test split

Task

Phoneme discovery with:

- Word-level supervision: provide ground truth word labels, but no character-level info
- Visual supervision: provide image features from hidden layer of ResNet34 for the paired images

Evaluation metrics

- Word error rate (WER)
- ▶ Token F1: $\frac{2TR \times TP}{TR + TP}$, $TR = \sum_k \frac{\max \# \text{ of allophones in cluster k}}{\# \text{ of phones in cluster k}}$, $TP = \sum_k \frac{\max \# \text{ of phones of type k from the same cluster k}}{\# \text{ of phones of type k}}$;
- ► ABX: based on discrimination task between triphones "bag" (A) vs another "bag" (B) and vs "beg" (X); 50% chance

Implementation details

- ➤ Speech feature: Mel filterbank with 80 mels, 25ms window size and 15ms overlap
- ▶ Source encoder: single-layer BiLSTM with hidden size 256
- ▶ Gumbel softmax: 49 categories, temperature varies from 1 to 0.1 with an anneal rate of 3×10^{-6} every 100 steps
- ▶ VQ: codebook with 65 512-dim embeddings uniformly initialized between [-1/512, 1/512]; exponential mean average with a decay rate of 0.995 for codebook update,
- CPC: positive step= 6, number of negative samples per step= 17; dot product predictor score s
- ► Adam optimizer, starting learning rate 10⁻³, batch size of 32, 150 epochs

Overall results

	WER	Token F1	ABX
Word-level supervision			
CPC	-	-	24
CPC+VQ (van Niekerk et al. (2020))	-	_	20
IB	1.5	42	5.2
IB+CPC	1.5	48	12.5
Image-level supervision			
BLSTM	24	-	21
IB+VQ	31	-	10.5
IB+CPC+VQ	29	-	10

Table: Weakly supervised phoneme discovery performance on MSCOCO2k

Phoneme discovery performance vs level of compression for models with word supervision

Figure: Token F1 vs β

Figure: ABX vs β

Phoneme discovery performance vs level of compression for models with visual supervision

Figure: WER vs β (Trained only 50 epochs)

Figure: ABX vs β (Trained only 50 epochs)

t-SNE visualization for phoneme discovery with word supervision

Phoneme level t-SNE plot phonemes -SNE dim1 t-SNE dim0

Figure: IB only

Figure: IB+CPC

t-SNE visualization for phoneme discovery with visual supervision

Figure: IB+VQ

Figure: IB+CPC+VQ

Conclusion and future work

- Information bottleneck as a general framework for weakly supervised phoneme discovery
- Need models beyond naive IB to further remove intra-phone variabilities
- Need better methods to train continuous codebook
- ▶ Need to test on larger dataset with richer vocabularies

- Benjamin van Niekerk, Leanne Nortje, and Herman Kamper. 2020. Vector-quantized neural networks for acoustic unit discovery in the zerospeech 2020 challenge. In *Interspeech*.
- Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding.
- Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. 2017. Neural discrete representation learning. In *31st Conference on Neural Information Processing Systems (NIPS 2017)*.
- N. Tishby, F.C. Pereira, and W. Bialek. 1999. The information bottleneck method. In *The 37th annual Allerton Conf. on Communication, Control, and Computing*, page pp. 368–377.