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Motivation

I Why discovering phonemes: A reliable phoneme set can:
I provide a efficient, low-cost representation to low-resource languages
I benefit speech processing systems for tasks such as speech

recognition, speech synthesis and spoken language understanding

I Frame: A sequence of fixed-length consecutive chunk of speech

I Segment: A sequence of consecutive speech frames; often
variable-length

I Phoneme: A set of minimal-length speech segments such that:
I For any phoneme X and segments x1, x2 ∈ X , substitute x1 with x2

in a sentence has no effect on its meaning
I For any two distinct phonemes X1,X2 and segments

x1 ∈ X1, x2 ∈ X2, substitute x1 with x2 in a sentence alter its meaning
I Allophone: Any subset of segments U ∈ X for a phoneme X
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Unsupervised vs weakly supervised phoneme discovery

I Unsupervised phone unit
discovery:
I Input: speech feature frames

x = x1, · · · , xT ;
I Output: the phone cluster

assignment z = z1, · · · , zT
I Weakly supervised phoneme

discovery:
I Inputs: speech feature

frames x = (x1, · · · , xT ) and
semantic context
y = (y1, · · · , yL)

I Outputs: same as the
unsupervised approach

Figure: Unsupervised phone unit
discovery

Figure: Weakly supervised phone unit
discovery



A distributional view of phonemes
I Issues with unsupervised models: Mostly bottom-up,

acoustic-driven⇒unable to distinguish between allophones and
phonemes⇒large number of redundant clusters

I Advantage of weakly supervised model:
I Will not separate allophones, less redundant clusters
I Phoneme defined both by its acoustic properties and its semantic

context, Closer to the definition of phoneme

Figure: Distributional representation of the phoneme /ai/ using images



Information bottleneck (IB)
I Fundamental tradeoff in learning:

I Performance: e.g., accuracy, distortion/fidelity metrics, reward
I Resources: e.g., memory, space, time, energy, material, money

I Mutual information:
I (X ;Y ) :=

∫
X ,Y pX ,Y (x , y) log pXY (x,y)

pX (x)pY (y)
dxdy , a nonnegative

quantity to measure the amount of information shared by two
random variables X and Y with joint distribution pX ,Y and
marginals pX , pY

I Information bottleneck principle (Tishby et al. (1999)): Achieve
the highest prediction performance with the lowest amount of
information

min I (Z ;X ) s.t. I (Z ;Y ) ≥ R

I X : Source variable containing all the information resources we have;
I Y : Target variable to predict for a given task;
I Z : Bottleneck variable containing information from X relevant to

predict Y , i.e., form Markov chain Z − X − Y ;
I I (X ;Z) ≈ the amount of information taken by Z from X ;
I I (Z ;Y ) ≈ how accurate can Z predict Y
I R: Lower bound on the performance, ≤ I (X ;Y )



Phonemes as information bottleneck

I Information bottleneck for sequential data:
I X1:T ∈ X T = (X1, · · · ,XT ): Speech feature frames;
I Z1:T ∈ ZT = (Z1, · · · ,ZT ): Framewise (latent) phoneme labels;
I Y1:L ∈ YL = (Y1, · · · ,YL): Semantic contexts such as nearby frames,

allophone segments and images

I Phonemes Z1:T contains all semantic information from X ,
⇒ I (Z1:T ;Y1:L) = I (X1:T ;Y1:L);

I Any representation Z ′1:T with less information will inevitably confuse
at least one pair of distinct semantic contexts
(Y ,Y ′)⇒ I (Z1:T ;X1:T ) is minimal

I General IB objective for phoneme discovery:

min
Z1:T−X1:T−Y1:L

I (Z1:T ;X1:T )

s.t. I (Z1:T ;Y1:L) = I (X1:T ;Y1:L)
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Learning algorithm for IB-based phoneme discovery

Challenges

I |Z|T possible combinations of phoneme sequence in a sentence
⇒ I (Z1:T ;Y1:L) intractable in general

I O(T 2) possible phoneme boundaries ⇒ I (X1:T ;Z1:T ) hard to
compute

Naive IB-based phoneme model

I Decoupling of Zt ’s: Zt ’s are independent given X1:T ;

I Decoupling of Xt ’s: Zt is independent of {Xs}s 6=t given Xt ;

I Decoupling of Yi ’s: Yi ’s are independent given Z1:T ;

I Replica assumption of Yi ’s: One replica Y
(t)
1:L of Y1:L for each t, with

Y
(t)
1:L independent of {(Zs ,Y

(s)
1:L )}s 6=t given Zt



Naive IB model

Variational IB (VIB) training objective
Let β(R) be the Lagrangian multiplier of the VIB at rate R:

min
I (Z1:T ;Y1:L)≥R

I (Z1:T ;X1:T ) =: min∑
i I (Zt ;Yi )≥R

∑
t

H(Zt)− H(Zt |Xt)

=: minEx,y[
∑
t

∑
zt

qt(zt |x1:T ) log
qt(zt |x1:T )

r(zt)
−

β(R)
∑
t,i

∑
zt

qt(zt |x1:T ) log
qti (yi |zt)
p(yi )

)] + C =: LIB ,

Model parameters

I qt(z |x): Probability of assigning t-th frame to phoneme z ;

I qti (y |z): Probability of predicting the i-th semantic context to be y
given the t-th phoneme is z ;

I r(z): Prior probability of phoneme z



Naive IB model

Interpretation of β

I Higher performance requirement R ⇒ higher β(R) ⇒ more
information taken from speech X1:T

I Optimal β for phoneme discovery when R = I (X1:T ;Y1:L)

Decoding

I Maximum a posteriori (MAP) decoding:

z∗t = max
z

p(z |xt , y1:L)

= max
z

qt(z |xt), t = 1, · · · ,T ,

by conditional independence between Zt ,Y1:L given Xt .



Naive IB model: Architecture for discrete target variable

I Bottleneck layer: Samples (one-hot
representation of zt ’s) from
qt(zt |x1:T ) with Gumbel softmax
trick: Let btz := log qt(zt |x),

zt = arg max
z

(btz + gtz)

⇒onehotz(zt) ≈
exp( btz+gtz

τ )∑
z′ exp( btz′+gtz′

τ )
,

where gtz = − log(− log utz)’s are
Gumbel random variables for
standard uniform random variable
utz ’s

I Target predictor: A lookup table E
with weight ezy to be the logit of
q(yi = y |zt = z)

LSTM LSTM LSTM

x1 x2 xT

p(z1|x) p(z2|x) p(zT |x)
Gumbel Gumbel Gumbel

z1 z2 zT

Linear Linear Linear

p(y|z1) p(y|z2) p(y|zT )

Figure: Naive deep variational IB
Model



Naive IB model: Architecture for continuous target variable
I Predictor: Replace logits with a continuous codebook E
I I (Z ;Y ) ≈ Ex,y

∑T
t=1

∑
zt∼q(zt |x1:T ) log

exp(s(ezt ,y))∑
y′ exp(s(ezt ,y

′)) + C =

Ex,y log
exp(

∑T
t=1

∑
zt∼q(zt |x1:T ) s(ezt ,y))∑

y′ exp(
∑T

t=1

∑
zt∼q(zt |x1:T ) s(ezt ,y

′))
, for negative samples y ′’s

LSTM LSTM LSTM

x1 x2 xT

p(z1|x) p(z2|x) p(zT |x)
Gumbel Gumbel Gumbel

z1 z2 zT

Linear Linear Linear

ez1 ez2 ezT

ResNet34

y

Figure: Naive IB Model for continuous Y



Naive IB model: Alternative model with vector
quantization (van den Oord et al. (2017))

I Replace the Gumbel softmax layer with:

1. An encoder e : X 7→ RD

2. A codebook: E ∈ RD×K = [e1, · · · , eK ]
3. A distance metric: d(·, ·), typically L2 squared distance
4. A quantizer: z : RD 7→ {1, · · · ,K}, a deterministic mapping from x

to a phoneme unit index whose corresponding vector is closest to x
in the embedding space, i.e., z(x) = arg minz d(e(x), ez)

I Phoneme posterior:

qt(z |x) :=
exp(−d(et(x), ez))∑
z′ exp(−d(et(x), ez))

I Vector quantization loss:

LVQ(θ) = Ex[
T∑
t=1

d(et(x), ezt(x))]

L = LIB + LVQ(θ)



Beyond Naive IB model

Limitations of Naive IB model
1. Oversimplified relations between phonemes and its semantic context

2. Not modeling inter-dependencies between phonemes

Incoporating phonotactics: Bag-of-phone IB model

I Modified IB objective: Prediction for future speech features within a
window of kmax

min
T∑
t=1

I (Zt ;Xt)

s.t.
T∑
t=1

I (Zt ;Y
(t)
i ) ≥ RY ,

T−k∑
t=1

I (Zt ;Xt+k) ≥ Rk ,

k = 1, · · · , kmax



Bag-of-phone IB model: Architecture
I Phonotactic predictor: use contrastive predictive coding (CPC)

(van den Oord et al.) and its variants
I I (Z ;Xk) ≈ Ex,y

∑T−kmax

t=1

∑kmax

k=1 log exp(s(ct ,xt+k ))∑
n∈Nt

exp(s(ct ,n))
+ C , with some

sets of negative samples Nt ’s

LSTM LSTM LSTM

x1 x2 xt xt+1 xt+2

c1
p(z1|x)

c2
p(z2|x)

cT
p(zT |x)

Gumbel Gumbel Gumbel

z1 z2 zT

Linear Linear Linear

ez1 ez2 ezT

ResNet34

y

Figure: IB+CPC Model
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Experimental setting: Weakly supervised phoneme
discovery

Dataset
MSCOCO2k: 12500 isolated words
with paired images for 65 visual
concepts from validation set of
SpeechCOCO dataset, 200 instances
per concept, 10000/2500 train test
split

Task
Phoneme discovery with:

1. Word-level supervision: provide
ground truth word labels, but
no character-level info

2. Visual supervision: provide
image features from hidden
layer of ResNet34 for the paired
images

Evaluation metrics
I Word error rate (WER)

I Token F1: 2TR×TP
TR+TP , TR =

∑
k

max # of allophones in cluster k
# of phones in cluster k ,

TP =
∑

k
max # of phones of type k from the same cluster

# of phones of type k ;

I ABX: based on discrimination task between triphones “bag” (A) vs
another “bag” (B) and vs “beg” (X); 50% chance



Implementation details

I Speech feature: Mel filterbank with 80 mels, 25ms window size and
15ms overlap

I Source encoder: single-layer BiLSTM with hidden size 256

I Gumbel softmax: 49 categories, temperature varies from 1 to 0.1
with an anneal rate of 3× 10−6 every 100 steps

I VQ: codebook with 65 512-dim embeddings uniformly initialized
between [−1/512, 1/512]; exponential mean average with a decay
rate of 0.995 for codebook update,

I CPC: positive step= 6, number of negative samples per step= 17;
dot product predictor score s

I Adam optimizer, starting learning rate 10−3, batch size of 32, 150
epochs



Overall results

WER Token F1 ABX
Word-level supervision

CPC - - 24
CPC+VQ (van Niekerk et al. (2020)) - - 20
IB 1.5 42 5.2
IB+CPC 1.5 48 12.5

Image-level supervision
BLSTM 24 - 21
IB+VQ 31 - 10.5
IB+CPC+VQ 29 - 10

Table: Weakly supervised phoneme discovery performance on MSCOCO2k



Phoneme discovery performance vs level of compression for
models with word supervision

Figure: Token F1 vs β Figure: ABX vs β



Phoneme discovery performance vs level of compression for
models with visual supervision

Figure: WER vs β (Trained only 50
epochs)

Figure: ABX vs β (Trained only 50
epochs)



t-SNE visualization for phoneme discovery with word
supervision

Figure: IB only Figure: IB+CPC



t-SNE visualization for phoneme discovery with visual
supervision

Figure: IB+VQ Figure: IB+CPC+VQ



Conclusion and future work

I Information bottleneck as a general framework for weakly supervised
phoneme discovery

I Need models beyond naive IB to further remove intra-phone
variabilities

I Need better methods to train continuous codebook

I Need to test on larger dataset with richer vocabularies
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