## Automatic Prediction of Pronunciation Errors by Second Language Learners based on Phonological and Phonetic Information of Learners' First Language and the Target Language

Shuju Shi ECE590 SIP March 17, 2021

### Overview

- Research Background
- Research Questions
- Methodology
  - Stimuli design and corpus
  - Feature extraction and normalization
  - Assimilation of perceptual space using acoustic features
- Experiments and Results
  - Acoustic analysis of vowel inventories
  - Assimilation of L2 pronunciation
- Conclusion and Future Work

## Research Background

- The phenomenon:
  - Learners' L1 has a systematic influence on their L2 sound acquisition
- The theories:
  - Perceptual Assimilation Model (PAM/PAM-L2)
  - Speech Learning Model (SLM/SLM-r)
  - Native Magnet Theory Model (NLM)
- The applications:
  - Simulating L1/L2 perceptual space (Guenther and Gjaja 1996, Shi and Shih 2019)
  - Simulating L2 sound acquisition process (Thomson et al. 2009, Gong et al. 2015)

## Perceptual Assimilation Model (Best 1995, Best & Tyler 2007)

PAM accounts for how naïve speakers (PAM) and L2 learners (PAM-L2)
assimilate a new sound contrast in L2 according to their L1 phonology
categories.

Table 1. The PAM-L2 assimilation patterns for non-native contrasts. (Adapted from Best 1995, pp. 125)

| Category              | Assimilation Pattern          | Prediction                   |
|-----------------------|-------------------------------|------------------------------|
| Two-Category          | Two L2 Sounds → Two L1 sounds | Excellent                    |
| Single-Category       | Two L2 Sounds → One L1 sound  | Poor                         |
| Category-Goodness     | Two L2 sounds → One L1 sound  | Variable (Poor to very good) |
| No L1-L2 Assimilation | Two L2 sounds → No L1 sound   | New category/categories      |

# Speech Learning Model and the revised Speech Learning Model (Flege, 1995 & 2021)

- SLM and SLM-r accounts for the variation in the extent of individuals' learning phonetic segments in an L2.
  - In contrast to PAM/PAM-L2, L1 and L2 are related perceptually at allophonic level.
  - Possibility of forming new L2 categories increases with perceived dissimilarity.
  - L2 sound categories may differ from the native categories.
  - Learners' ability to discern phonetic difference between L2 sounds that are non-contrastive in their L1 decreases as age of learning increases.

## Native Magnet Theory Model (Kuhl 1992 & 2000, Iverson et al. 2003)

- NLM accounts for how L1 experience serves as language-specific filters to warp the acoustic dimensions and influence how sounds in L2 are perceived, i.e., the perceptual magnetic effect:
  - Decreasing perceptual sensitivity within a category and increasing sensitivity between categories
  - Facilitating perceptual sensitivity of native phonetic categories whereas inhibiting perceptual sensitivity of phonetic categories in foreign languages

## Computational Approaches

- Simulation magnetic effect in L1/L2 perception
  - Guenther and Gjaja (1996) proposed to use a self-organizing neural network to simulate perceptual magnetic effect.
- Simulating L2 sound acquisition
  - Thomson et al. (2009) used discriminant function analysis to measure the similarity between Chinese and English vowels and then predict L2 learner behavior based on the achieved similarity degree.
  - Gong et al. (2015) introduced a framework where they used HMMs to model the interaction between L1 and L2 at the onset of L2 acquisition based on data of Chinese learner's perception of Spanish consonants.

## Comparison of the theoretical models

#### Common ground

- All agree that L1 and L2 share a common phonological/phonetic space.
- All establish their arguments based on the similarity/dissimilarity of sounds between L1 and L2.

#### Features

- SLM/SLM-r: perceived salient phonetic difference, distribution of sounds
- PAM/PAM-L2: articulatory gestures
- NLM: acoustic features

#### Potential Problems

- Features used in the first two models are more descriptive than quantitative.
- Methods used in the third model are exhaustive and could be difficult if not impossible to implement on language-inventory level

## Limitations of current computational models

- Stimuli
  - Synthetic speech
- Coverage of sound inventory
  - Subsets of either vowels or consonants of a language
- Assumption of assimilation level
  - Phonemic
- Pedagogical implications
  - Corrective feedback

## Research questions

• Do L1 and L2 sound inventories exist in a common phonological/phonetic space?

 At what level (phoneme, allophone, orthography or a hybrid of the three) does L1 interfere L2 phonology/phonetics acquisition?

 How well can the quantified differences between L1 and L2 sound inventories account for L2 pronunciation errors?

## Methodology: Phonological Vowel Inventories

Table 1. Mandarin Inventory: Orthographies

|      | FRONT | CENTRAL | BACK |  |
|------|-------|---------|------|--|
| HIGH | i ü   |         | u    |  |
| MID  |       | e er    | 0    |  |
| LOW  | a     |         |      |  |

Table 3. Mandarin Inventory: Allophones

|        | FRONT                 | CENTRAL   | BACK    |  |
|--------|-----------------------|-----------|---------|--|
| HIGH   | [i] [y]               | ([1] [1]) | [u]     |  |
| IIIGII |                       |           | [ʊ]     |  |
|        | [e]                   | [&]       | [x] [o] |  |
| MID    | [ε]                   | [ə]       |         |  |
| LOW    | [æ]                   | [e]       |         |  |
| LOVV   | [a] [a <sup>4</sup> ] | [A]       | [a]     |  |

Mandarin Diphthongs: /ai, au, ou, ei/

Table 2. Mandarin Inventory: Phonemes

|      | FRONT   | CENTRAL   | BACK  |  |
|------|---------|-----------|-------|--|
| HIGH | /i/ /y/ |           | /u/   |  |
| MID  |         | /ə/ (/æ/) | (/४/) |  |
| LOW  | /a/     |           |       |  |

Table 4. English Inventory: Phonemes

|        | FRONT | CENTRAL | BACK    |  |
|--------|-------|---------|---------|--|
| HIGH   | /i/   |         | /u/     |  |
| 111011 | /ı/   |         | /ʊ/     |  |
|        |       | /æ/     |         |  |
| MID    | /ε/   | /ə/     | /c/ /л/ |  |
| LOW    | /æ/   |         |         |  |
| LOVV   |       |         | /a/     |  |

English Diphthongs: /aɪ, aʊ, oʊ, eɪ, ɔɪ/

## Methodology: Stimuli Design and Corpus

#### Participants

- Chinese: 18 speakers (9 female, 9 male), Mandarin speakers, born and raised in Beijing, ages 19-34 (mean: 24.2, std.: 3.98), ages of English learning (6-10)
- English: 13 speakers (7 male, 6 female), born and raised in the Chicago area, ages: 19-28 (mean:21.5, std.: 2.99)

#### Stimuli

- Chinese: all possible Chinese monosyllabic Pinyin with 4-tone variation (1856 syllables)
- English: monosyllabic words selected based on frequency and of comparable size with the Chinese stimuli (1660 words)(COCA2016)
- English speakers only do the recording for the English stimuli whereas Mandarin speakers do the recording for both English and Chinese.
- Segmentation
  - Forced alignment: Montreal Forced Aligner
  - Manual checking

# Methodology: Feature Extraction and Normalization

- The procedure to optimize formant ceiling follows the idea in Escudero et al. (2009).
  - Unit
    - Mandarin: tri-phone
    - English: 4 bi-phone conditions (V-/I/, V-/J/, V-nasal, V-other)
  - Criteria
    - The "optimal ceiling" is chosen as the one that yields the lowest variation in the measured F1-F2 pairs among all the samples of that triphone/bi-phone.
- For each vowel, formants are extracted at its optimal ceiling, converted to bark, and then z-normalized within each speaker

## Methodology: Perceptual Space Simulation

- Findings/Statements by the aforementioned theoretical models
  - L1 and L2 sounds share a common phonological/phonetic space
  - SLM: learners' representation of phonetic categories is based on different features, or feature weights, than native speakers'
  - NLM: A language learner's perceptual space of L2 sound inventory is distorted by his/her L1 sound inventory (Iverson et al., 2003)

PCA could possibly be used to address all the conditions.

# Methodology: Perceptual Space Simulation (cont'd)

 In this study we proposed to use PCA in three different ways regarding how we get the principal components:

Table 5. Assumptions for the proposed PCA approaches

|                                  | Phonological Space | Feature/Feature weights |
|----------------------------------|--------------------|-------------------------|
| PCA1 (W=W <sub>L1</sub> )        | Separate(?)        | L1                      |
| PCA2 (W=W <sub>Target</sub> )    | Separate           | Target Language         |
| PCA3 (W=W <sub>L1+Target</sub> ) | Common             | Combined                |

### **English Allophones**

- Two allophones are included for /æ/: æ\_nasal, æ\_oral
- Three allophones are included for /α/ and /ɔ/: α\_ɹ, ɔ\_ɹ and α-ɔ





## English Allophones

#### Vowel /n/ under different following contexts



- Two allophones are included for /n/:
   n\_l and n.
- In total, we end up with 18 vowels for English vowel allophone inventory.

# Vowel classification at different inventory levels

#### Features

• Duration, F1-F3 at 10 equally distributed time points of a vowel interval

#### Model

Gaussian Mixture Models (GMMs)

#### Results

Table 6. Classification results for vowels

|          | English         |                   | English Mandarin |                 |                 |                   |                   |
|----------|-----------------|-------------------|------------------|-----------------|-----------------|-------------------|-------------------|
| Level    | Phoneme<br>(15) | Allophone<br>(18) | Pinyin<br>(11)   | Phoneme<br>(10) | Phoneme<br>(11) | Allophone<br>(18) | Allophone<br>(22) |
| Accuracy | 86.3%           | 87.6%             | 90.1%            | 90.5%           | 90.8%           | 89.1%             | 87.5%             |

## Classification results: English



#### Allophone(18): 87.6%



## Acoustic Vowel Spaces: Monophthongs

#### Mandarin Phoneme(10) vs. English Phonemes







# Acoustic Vowel Spaces: Monophthongs

• Same IPAs but different acoustic qualities across languages

#### Mandarin Allophone(18) vs. English Phonemes

Language

Chinese

English



#### Mandarin Allophone(22) vs. English Phonemes



## Native English vs. L2 English: Monophthongs



 /ε/ is fronter, /æ/ is lower and more back, /α/ is higher and /ɪ/ is fronter and higher: suggesting assimilation effect on both phonemic and allophonic levels

#### Language

- a English
- a L2E

### L2E Classification Results



## Diphthongs: /au/-/aʊ/









- Chinese vs. English
  - Lower F1 for Chinese /au/
  - Lower F2 for Chinese /a/ and higher F2 for Chinese /u/
- L2E vs. English
  - Lower F1 for L2E /a/ and higher F1 for L2E /σ/
  - Lower F2 for L2E /a/ and higher F2 for L2E /σ/



- Mandarin /a/ under nasal contexts
  - /a/ is raised under both nasal contexts (lower F1 values)
  - /a/ is more back when followed by the velar nasal /ŋ/

#### Vowel /a/ under different following contexts



#### Vowels /a/ under different following contexts



- Native English /æ/
  - Three different clusters, æ\_nasal, æ\_l, æ\_other
  - /æ/ is raised and fronted for all nasal conditions (lower F1 values and higher F2 values)
  - There is a slight difference between different nasal conditions.



#### NE: Vowel /æ/ under different following contexts



- L2E /æ/
  - There are approximately three different clusters,
     æ\_nasal, æ\_l, æ\_other
    - The difference between æ\_nasal, and æ\_other is smaller but the difference among æ\_nasal is bigger.





#### L2E: Vowel /æ/ under different following contexts



- L2E: /a/-/ɔ/
  - There is partial  $/\alpha/-/$  merger in both cases.
  - The difference between α\_x vs. α-ɔ, and that between σ\_x v.s α-ɔ is smaller in native English than in L2 English.



### Assimilation

- English to Chinese
  - How English phones are assimilated to Chinese phones under each assumption
    - PCA transformation
    - Vowel inventory levels

- English to English
  - How transformed English phones are assimilated to English phones under each assumption
    - PCA transformation
    - Vowel inventory levels

## Assimilation Results: English to Chinese



## Assimilation Results: English to English



### Conclusion and Future work

#### Conclusion

- L1 and L2 are likely to share a common phonological / phonetic space
- Assimilation could happen at both phonemic and allophonic levels
- Our approach is effective in simulating L2 assimilation and in automatic prediction of L2 pronunciation errors
- The English-to-Chinese assimilation approach can account for more pronunciation errors than the English-to-English assimilation approach so far.

#### Future work

- Analysis of L2 error patterns in more detail
- Analysis by different L2 proficiency levels
- Quantitative assessment of assimilation results
- Pre-processing of pronunciation errors introduced by orthography

Thank you!
Any questions?