
Problem Formulation
Methods

Experiment
References

Align or attend? Toward more efficient and
accurate spoken word discovery using

speech-to-image retrieval
— ECE 590 SIP presentation

Liming Wang

Nov.16th, 2020

Liming Wang Align or attend



Problem Formulation
Methods

Experiment
References

1 Problem Formulation

2 Methods

3 Experiment

Liming Wang Align or attend



Problem Formulation
Methods

Experiment
References

Multimodal Word Discovery (MWD)

Figure: From babyblue.com
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Multimodal Word Discovery (MWD)

“Which describes which?”

Given:

Spoken caption: x = x1, · · · , xT
Image regions: y = y1, · · · , yL

Find: which spoken frames describes which visual region

Maximum likelihood estimation (MLE)

max
θ

p(x, y|θ) = max
θ

∑
A

p(x, y,A|θ)

A∗ = argmaxA p(A|x, y, θ),

where Ati = 1 if word t and region i are aligned.
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Two-step approach: MWD via speech-to-image retrieval

Step 1

Sentence-level matching (speech-to-image retrieval Harwath and Glass
(2015)):

max
θ

p(M|x(1:N), y(1:N), θ) =
∏

n,m:Mnm=1

p(x(n), y(m)|θ)∑
n′ p(x(n), y(n′)|θ)

,

where Mnm = 1 if caption n and image m are matched.

Step 2

Word-level matching (MWD):

A∗ = argmaxA p(A|x, y, θ).
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DAVEnet: State-of-the-art MWD system

Origin

First proposed by Harwath et al. (2018)

Assumptions

1 Dominant (soft) alignment assumption:

pDAVEnet(x, y|θ) := exp

∑
t,i

Ati s(xt , yi )


2 Common space assumption:

s(xt , yi ) =
φa(xt)

>φv (yi )

‖φa(xt)‖‖φv (yi )‖
,

where φa(·), φv (·) are learned by two
DNNs
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Does DAVEnet always learn good word-level
representation?

Analysis: MLE of DAVEnet

max
φa,φv

s(x, y) = max
‖φa(xt)‖2=1∀t,
‖φv (yi )‖2=1∀i

Tr
(
ΦaAΦ>v

)
,

where maximum is achieved if, for svd(A) = U,Σ,V:

ΦaU = ΦvV

Good sentence embedding 6= good word embedding

:

A independent of φv , φa =⇒ φ∗v , φ
∗
a independent of xt and yi

=⇒ bad word-level representation
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Fix the common space: Attention mechanisms

Intuition

Need to make A variable of
φa, φv

May still fail to learn good word
embedding with variable A
(e.g., constant φv (yi ))

φa,1 φa,2 ... φa,T

φv ,1 φv ,2 φv ,3 ... φv ,L

α, β

Cosine attention

αti =
exp (s(xt , yi ))∑
t exp (s(xt , yi ))

βti =
exp (s(xt , yi ))∑
i exp (s(xt , yi ))

Additive attention

αti =
exp (Wi [φa,t ;φv ,i ; 1])∑
t exp (W[φa,t′ ;φv ,i ; 1])

βti =
exp (Wi [φa,t ;φv ,i ; 1])∑
i ′ exp (Wi ′ [φa,t ;φv ,i ; 1])

Self attention

α
(m)
tt′ =

exp
(

Φ
(m)>
a Φ

(m)
a

)
tt′∑

t′′ exp
(

Φ
(m)>
a Φ

(m)
a

)
tt′′
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Fix the common space: Change the space

DNN-HMM-DNN model by Wang and Hasegawa-Johnson (2020)

Additional hidden variables:

z = [z1, · · · , zL]: image concept of each image region
φ = [φ1, · · · , φT ]: acoustic unit label of each speech segment

Conditional likelihood:

p(y|x, θ) =
∑

z,A,φ

p(z|y)p(A, φ, x|z, L)

Learn to recognize concepts and phones with two DNNs ψa and ψv

Learn to align concepts and phones with an HMM
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DNN-HMM-DNN as learning a common
probabilistic space

Rewrite the conditional likelihood using
matrix operations:

max
A

p(y|x,A, θ) = max
At∈∆L,∀t

Tr
(
Ψ>a PΨvA

)
,

Guarantee

As long as the latent word/concept
classifiers are sufficiently accurate, it can be
shown that the SMT is a consistent
estimator when learning many-to-one
relations between spoken words and image
regions.

Figure: CzW := (Ψ>
v AΨa)z
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Dataset

Flickr8k (Hodosh et al. (2010)): Split according to Karpathy et al.
(2014), 30000 image-caption pairs for training, 1000 images for
evaluation

SpeechCOCO (Havard et al. (2017)): 80 image concept classes,
80000 image-caption pairs for training, 1000 images randomly
chosen from the MSCOCO 2014 validation set for evaluation

Preprocessing: Filter the most frequent 2000 word types, not
including stop words
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Features

Speech features:

Retrieval: Mel filter-bank features with 25ms window and 10ms skip
step
MWD: last layer of the speech encoder averaged over each word
segment, compressed to 300-d vectors with PCA

Image features: 2048-d ResNet50 features for the top 10 ROIs
proposed by the Faster-RCNN pretrained on Visual Genome and
ImageNet
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Implementation details

NMT

TDNN-based systems: 5 convolution layers, 1024-d embedding,
default settings of the DAVEnet implementation by (Harwath et al.
(2018))

BiLSTM-based system: 3 convolution layers, 1000-d embedding

Transformer-based system: 3 self-attention layers, 1024-d
embedding, implementation from ESPnet (Watanabe et al. (2018))

Loss function: masked margin softmax loss (Ilharco et al. (2019))

SMT

Softmax distributions with Gaussian kernels for encoders, 400 latent
word types, 80 latent image concepts for SpeechCOCO; 600 latent
image concepts for Flickr

Liming Wang Align or attend



Problem Formulation
Methods

Experiment
References

Results: Speech-to-image retrieval

Data
S2I
@1

@5 @10
I2S
@1

@5 @10

DAVEnet
MISA

COCO 12 38 57 12 41 59

DAVEnet
(phones)

COCO 32 66 79 32 66 79
Flickr 17 42 55 18 39 51

Cosine+DAVEnet COCO 13 42 60 14 43 61
Additive+DAVEnet COCO 9 31 48 10 35 53
Normalized+DAVEnet COCO 10 32 48 9 33 48

LSTM COCO 10 30 45 11 32 45

NMT+Transformer COCO 5 17 26 4 16 24

SMT+DAVEnet COCO 3 13 20 0.1 0.5 1
SMT
(phones)

COCO 7 24 36 4 16 28
Flickr 7 19 29 3 11 19
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Results: MWD

Alignment
Recall

Alignment
Precision

Alignment
F1

SMT+DAVEnet 60 30 40
SMT+Transformer 21.8 43 29
SMT (phones) 37.9 19 25.5
NMT+DAVEnet 54.9 27.8 36.9
NMT+Transformer 62.7 31.8 42.2

Table: Word discovery performance of various systems on MSCOCO; Results
are evaluated only with words that describe one of the 80 concepts
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Tradeoff between retrieval and word discovery

Figure: Alignment and Retrieval precision-recall curves for various models
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Example

(a) audio-level
DAVEnet+NMT

(b) audio-level
DAVEnet+SMT

(c) phone-level SMT

Figure: Word discovery results of different systems on the image-caption pair “a
woman eating a piece of pastry in a market area.” The texts are not available
in the first two figures during training and are shown for ease of understanding.
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Discussion

Averaging vs. peak detection: the right approach for extracting word
embedding from DAVEnet?

Common space clustering vs. probabilistic alignment/clustering

Discriminative training vs Maximum likelihood training
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New result

Discriminative training of SMT

max Tr(Ψ>a PΨvA)

s.t. Tr(Ψ̄>PΨv ) = 1,

Pw ∈ RK+,∀w

where Ψ̄ :=
∑N

n=1 AΨ
(n)>
a .

Solution

P∗w =
(Ψ>v AΨa)z∗w

(Ψ̄>Ψa)z∗z∗
ez∗ ,

where z∗ = arg maxz
(Ψ>a AΨv)z∗w
(Ψ̄>Ψa)z∗z∗

≈ arg maxz
p̄(z∗|w)
p̄(z∗) , where p̄(·) is the

empirical distribution.
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Conclusion

A speech embedding learned using a TDNN gives the highest
speech-to-image retrieval scores, but that embedding learned using a
self-attention Transformer model gives higher scores for word
discovery.

In both cases, accuracy is boosted by using an NMT-based attention
mechanism with self-attention layers, which helps the retrieval model
to learn better alignments for visual words.

From our results, we believe a joint retrieval-discovery is important
for developing better word discovery systems.
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Future Direction
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