An overview of methods for articulatory feature detection

Mahir Morshed

26 October 2020

ECE590SIP-20201026

26 October 2020 1 / 16

Outline

- Before deep learning
- Earlier deep methods
 - Fully connected
 - Convolutional
 - Recurrent
 - More recent methods
 Attention

The road ahead

Articulatory features

(what are they?)

- Facets of phone production by which differences between such phones may be characterized
- Although two languages may lack a common phone, close equivalents may exist which differ in a single characteristic
 - /t/ in South Asian languages vs /t/ elsewhere (place)
 - /r/ vs $/ \imath /$ (manner)
 - /p/ vs /b/ (voicing)
 - /e/ vs $/\epsilon/$ (height)
 - /a/vs/a/ (frontness)
 - /u/vs/u/ (roundedness)

一戸 ト イ ヨ ト イ ヨ ト

Modeling differences

or considerations in choosing and using an articulatory feature model

Feature	Value					
Sonority	Vowel, Obstruent, Sonorant, Syllabic, Silence					
Voicing	g Voiced, Voiceless, Not Applicable					
Consonantal features						
Manner	Fricative (FRI), Stop (STP), Flap (FLA), Nasal (NAS), Approximant (APP), Nasal Flap (NF), Not Applicable (NA)					
Place	Labial (LAB), Dental (DEN), Alveolar (ALV), Palatal (PAL), Velar (VEL), Glottal (GLO), Lat- eral (LAT), Rhotic (RHO), Not Applicable (NA)					
Vowel features						
Height	High, Mid, Low, Lowhigh, Midhigh, Not Appli- cable					
Frontness	Front, Back, Central, Backfront, Not Applicable					
Roundness	Round, Non-round, Round-Non-round, Non- round-Round, Not Applicable					
Tense	Tense, Lax, Not Applicable					

- Binary/unary features ([+sonorant], [+round], [nasalized])?
- Features on a spectrum (e.g. for place, [bilabial]-[glottal])?
- Separate detectors per class, or a single detector for all features?
- (Direct detection of features, or translation from phones?)

Figure: Articulatory feature set used in ¹

¹Rajamanohar and Fosler-Lussier, "An evaluation of hierarchical articulatory feature detectors".

Identifying articulatory cues

Liu, "Landmark detection for distinctive feature-based speech recognition"

Figure: Landmarks identified using detectors for glottal vibration, sonorant closure/release, and stop bursts.

- Separate coarse and fine preprocessors of broad frequency bands in original signal (using energy and deltas)
- Fine tailoring of detectors to distinctive features based on precomputed measurement thresholds
- Considerably greater error with sonorant detection (57%) versus for glottal vibration and bursts (5%/14%)

Recurrent binary detection

King and Taylor, "Detection of phonological features in continuous speech using neural networks"

- SPE, n-ary, and government phonology based feature sets examined
- Two-layer, 250 hidden unit, fully recurrent network detecting all SPE and GP-based features (multiple detectors in the n-ary case)
- \sim 90%+ accuracy for most features individually, but closer to \sim 50% when taken together

Figure: Comparison of ground truths for the phrase "economic cutbacks" and outputs appertaining from the network trained using GP.

(4) (5) (4) (5)

Fully connected detection/classification

Bhowmik, Chowdhury, and Das Mandal, "Deep Neural Network based Place and Manner of Articulation Detection and Classification for Bengali Continuous Speech"

Confusion Matrix									
	Velar	39133 12.7%	24 0.0%	131 0.0%	87 0.0%	274 0.1%	13 0.0%	0.0%	98.7% 1.3%
Output Class	Post- Alveolar	10825 3.5%	30898 10.1%	41 0.0%	0.0%	162 0.1%	0.0%	0.0%	73.7% 26.3%
	Alveolar	15650 5.1%	76 0.0%	18064 5.9%	91 0.0%	224 0.1%	11 0.0%	0 0.0%	52.9% 47.1%
	Dental	15585 5.1%	0.0%	159 0.1%	20492 6.7%	349 0.1%	39 0.0%	0.0%	56.0% 44.0%
	Bilabial	58878 19.2%	183 0.1%	294 0.1%	268 0.1%	37341 12.2%	37 0.0%	23 0.0%	38.5% 61.5%
	Glottal	5142 1.7%	3 0.0%	8 0.0%	8 0.0%	31 0.0%	3616 1.2%	0.0%	41.0% 59.0%
	Palatal	44087 14.4%	0.0%	0 0.0%	0 0.0%	17 0.0%	0.0%	4645 1.5%	9.5% 90.5%
		20.7% 79.3%	99.1% 0.9%	96.6% 3.4%	97.8% 2.2%	97.2% 2.8%	97.2% 2.8%	99.4% 0.6%	50.2% 49.8%
		Velar	Post- Alveolar	Alveolar	Dental Targe	Bilabial Class	Glottal	Palatal	
The get class									

Figure: Confusion matrix for the place of articulation classifier.

- 4-layer fully connected feature detectors
- "Manner" groupings rather broad, covering voicing and aspiration
- $\sim 90\%$ accuracy for detection, but degraded to 50% for place classification

Articulatory feature supplements

Manjunath et al., "Indian Languages ASR: A Multilingual Phone Recognition Framework with IPA Based Common Phone-set, Predicted Articulatory Features and Feature fusion"

- Comparisons between deep (5-layers) and shallow (1-layer) fully connected networks for detectors
- ~ 85% accurate feature classifiers in the deep case, with mixed improvements in overall phone recognition among tandem combinations

Figure: Multilingual phone recognition system information flow.

イロト イ伺ト イヨト イヨト

Convolutional classification

Merkx and Scharenborg, "Articulatory Feature Classification Using Convolutional Neural Networks"

- $\sim 90\%$ accuracy across feature classes using spectrograms without Mel filtering
- Compared to multi-layer perceptrons, major improvements to place classification, minor ones to manner classification

Softmax output layer
4 x FC layer 2048
Max pooling 2x3
2x Convolational layer 3x2, 256
Max pooling 2x2
2x Convoluational layer 3x3, 256
Max pooling 2x2
2x Convolutational layer 3x3, 128
Max pooling 1x2
2x Convolutional layer 3x3, 128
Max pooling 1x2
2x Convolutional layer 3x3, 64
Mel Fbank layer
Input layer

Figure: CNN-based articulatory feature detector architecture.

CTC-based feature extractors

Abraham, Umesh, and Joy, "Articulatory Feature Extraction Using CTC to Build Articulatory Classifiers Without Forced Frame Alignments for Speech Recognition"

Figure: Articulatory feature extraction information flow

- Fully connected, convolutional, and hybrid thereof architectures examined, alongside varied acoustic models
- $\sim 30\%-$ word error rates using BiLSTMs with CTC loss and, as input, articulatory features appended to MFCCs

< 47 ▶

Aiding bottleneck features

Shetty et al., "Articulatory and Stacked Bottleneck Features for Low Resource Speech Recognition"

Figure: Stacked bottleneck architecture for multilingual phone recognition

- Features, whether phones or articulations (concatenated, if necessary) fed into time-delayed neural network
- Slight accuracy improvements across languages compared to MFCCs or either articulatory or bottleneck features alone

Listening and attending to articulation

Karaulov and Tkanov, "Attention Model for Articulatory Features Detection"

- Multi-task learning setups (cross-training with phone outputs) considered
- $\sim 20 25\%$ phone error rates using models in which LAS decoder inputs were mapped directly to features

Figure: Ground truths compared with outputs from the decoder

Attributes from transformers

Li et al., "End-to-End Articulatory Attribute Modeling for Low-Resource Multilingual Speech Recognition"

Figure: Overall architecture of the speech recognizer showing intermediate inputs and outputs thereof

- Grapheme inputs converted to sequences of attributes (that is, not as separate streams)
- Slightly reduced character error rates compared to multilingual models based on words, characters, or phones

- **(周) (3) (3)**

Transfer learning for languages

using recurrent networks as a basis

- The progressive network format 1
- Language model fusion ²
- Articulograph readings as supplements ³

Figure: Progressive network architecture using articulatory feature detectors.

¹1 Qu et al., "Combining Articulatory Features with End-to-End Learning in Speech Recognition".

¹2 Inaguma et al., "Transfer Learning of Language-independent End-to-end ASR with Language Model Fusion".

¹3 Dash et al., "Automatic Speech Recognition with Articulatory Information and a Unified Dictionary for Hindi, Marathi, Bengali and Oriya".

Transfer learning elsewhere

such as with variations between same-language speakers

Figure: Multi-task, multilingual enhancement of a fully-connected phone recognizer.

- Accounting for differences between native- and second-language speakers ^{1 2}
- Handling differences arising in pathological speech ³

¹1 Duan et al., "Articulatory modeling for pronunciation error detection without non-native training data based on DNN transfer learning".

¹2 Jenne and Vu, "Multimodal Articulation-Based Pronunciation Error Detection with Spectrogram and Acoustic Features".

¹3 Yilmaz et al., "Articulatory Features for ASR of Pathological Speech".

Thank you!

3

<ロト <問ト < 国ト < 国ト