Solution Set 3

23. (a) $F(x,y) = -2x^2 + y^2 + 3xy - x - 2y$ is **jointly continuous** and twice continuously differentiable in (x,y). Hence, it is strictly concave-convex in (x,y) iff $\partial^2 F/\partial x^2 < 0$ and $\partial^2 F/\partial y^2 > 0$. Since,

$$\frac{\partial^2 F}{\partial x^2} = -4 < 0; \qquad \frac{\partial^2 F}{\partial y^2} = 2 > 0,$$

strict concavity-convexity readily follows. Then, in view of the *saddle-point theorem* proved in class, the game admits a unique saddle point solution, since the interval [0,1] is **compact**.

(b) The solution exists and is unique, as justified above.

Let φ and ψ be defined by [both map [0, 1] onto itself]

$$\begin{aligned} \max_{x} F(x,y) &=& F(\varphi(y),y) \qquad \forall y \in [0,1] \\ \min_{y} F(x,y) &=& F(x,\psi(x)) \qquad \forall x \in [0,1]. \end{aligned}$$

It readily follows that

$$\varphi(y) = \begin{cases} (3y-1)/4 & \text{if } y \ge \frac{1}{3} \\ 0 & \text{if } 0 \le y \le \frac{1}{3} \end{cases}$$

$$\psi(x) = \begin{cases} (2-3x)/2 & \text{if } 0 \le x \le \frac{2}{3} \\ 0 & \text{if } x > \frac{2}{3} \end{cases}.$$

Then, solving for x and y from $\begin{cases} x = \varphi(y) \\ y = \psi(x) \end{cases}$, we obtain the **unique** solution

$$x^* = \frac{4}{17} \cong 0.235; y^* = \frac{11}{17} \cong 0.647.$$

The corresponding value of F, which is the saddle-point value, is $F(x^*, y^*) \cong -0.7647$.

(c) The sequence generated is

$$\begin{cases} x_{k+1} &= \varphi(y_k) \\ y_{k+1} &= \psi(x_{k+1}) \end{cases}$$

 \Rightarrow

$$y_{k+1} = \psi(\varphi(y_k)) = \begin{cases} \frac{11}{8} - \frac{9}{8}y_k & y_k \ge \frac{1}{3} \\ 1 & y_k < \frac{1}{3} \end{cases}$$

Since the absolute value of the coefficient of y_k above is larger than 1, the sequence **does not converge**, regardless of what initial condition we choose for y_0 (other than the equilibrium value: 11/17).

24. (a) The proof here parallels that of the saddle-point equilibrium, given in class. As proven in class, the conditions given on X, K_X , Y, K_Y , and F_1 lead to the existence of an upper semi-continuous, closed, convex map $g_1: K_Y \to 2^{K_X}$ such that any $x \in g_1(y)$ minimizes $F_1(x,y)$ over $x \in K_X$, for each fixed $y \in K_Y$. Similarly, there exists an upper semi-continuous map $g_2: K_X \to 2^{K_Y}$, which is also closed and convex, such that any $y \in g_2(x)$ minimizes $F_2(x,y)$ over $y \in K_Y$, for each fixed $x \in K_X$. Every Nash equilibrium is a common fixed point of these two point-to-set maps, and every such fixed point can be obtained from

$$x \in g_1(g_2(x)); \quad y \in g_2(x)$$

As shown in class, the composite map $(g_1 \circ g_2)(\cdot) := g_1(g_2(\cdot))$ is a multifunction from K_X into 2^{K_X} , which is also upper semi-continuous, closed and convex. Furthermore, since K_X is a compact subset of the metric space X, $(g_1 \circ g_2)$ has a fixed point, say x^* , by Fan's Fixed-Point Theorem (*Correspondence #3*, *Theorem 9*). Then, it readily follows that $(x^*, y^* \in g_2(x^*))$ is a Nash equilibrium point.

(b) All conditions above hold here; in particular F_1 is strictly convex in x and F_2 is convex in y; furthermore, K_X and K_Y are convex and compact. Hence, we know from the result above that there exists a Nash equilibrium. To compute it (and to determine whether it is unique or not), note that

$$g_1(y) = \frac{1}{y+1}, \quad g_2(x) = \begin{cases} 0 & \text{if } x > 1/2 \\ [0,1] & \text{if } x = 1/2 \\ 1 & \text{if } x < 1/2 \end{cases} \Rightarrow (g_1 \circ g_2)(x) = \begin{cases} 1 & \text{if } x > 1/2 \\ [1/2,1] & \text{if } x = 1/2 \\ 1/2 & \text{if } x < 1/2 \end{cases}$$

Hence, g_1 is single-valued, but g_2 as well as $g_1 \circ g_2$ are multi-valued. If follows by inspection that $g_1 \circ g_2$ has two fixed points: x = 1/2 and x = 1. These correspond to y = 1, and y = 0, respectively. (Note that even though $g_2(1/2) = [0, 1]$, only the point y = 1 in the interval [0, 1] leads to $g_1(1) = 1/2$.) Hence, the game admits two Nash equilibria:

$$x^* = \frac{1}{2}, y^* = 1$$
 and $x^\circ = 1, y^\circ = 0$

- **25.** Let us check the four axioms:
 - (i) $\overline{(B,A)} = \overline{Tr[B^TQ\bar{A}]} = Tr[\bar{B}^T\bar{Q}A] = Tr[A^T\bar{Q}^T\bar{B}] = (A,B)$, where the third equality holds because $Tr[C] = Tr[C^T]$, and the last one holds because Q is Hermitian.
 - (ii) $(A+B,C) = Tr[A^TQ\overline{C}] + Tr[B^TQ\overline{C}] = (A,C) + (B,C)$ holds for all A,B and C.
 - (iii) $(\lambda A, B) = \lambda \operatorname{Tr}[A^T Q \overline{B}] = \lambda (A, B)$ holds for all A and B.
 - (iv) $(A, A) = Tr[A^TQ\bar{A}] \to \text{this}$ is positive for all $A \neq 0$ because the matrix Q is Hermitian and positive definite, i.e., all its eigenvalues are positive.

Hence, $(A, B) = Tr[A^TQB]$ is indeed an inner product.

26. (a) It is <u>not</u> an inner product on X, because

$$(x,x) = \left| \int_1^4 s^2 x(s) ds \right|^2$$

can be made zero without x being the zero function.

- (b) Yes, it is an inner product on X, as all four axioms of an inner product are satisfied:
- (i) (x,y) = (y,x) for all $x,y \in X$.
- (ii) (x + y, z) = (x, z) + (x, z) for all $x, y, z \in X$.
- (iii) $(\lambda x, y) = \lambda(x, y)$ for all real numbers λ and all $x, y \in X$.
- (iv) $(x,x) = \int_1^4 t^3 x^2(t) dt \ge 0$ and is equal to zero iff x(t) = 0 for all $t \in [1,4]$, which is the zero element in X.
- 27. (a) Here the Hilbert space is $H = L_2[-1, 2]$, and $M = \{m \in H : m(t) = a + bt, a, b \in \mathbb{R}\}$. Note that M is a 2-dimensional subspace of H, which is also closed (it is in fact isomorphic to \mathbb{R}^2). Hence the problem can be viewed as the optimization problem of minimizing ||x m|| over $m \in M$, where $x(t) = t^3$ is an element of H. The Projection Theorem directly applies here, leading to the conclusion that there exists a unique $m_o \in M$ that solves this minimization problem, and that $x m_o \perp M$.
 - (b) We have to solve for a and b from the two relationships:

$$x - m_o \perp 1 \implies (t^3 - m_o, 1) = 0$$
 and $x - m_o \perp t \implies (t^3 - m_o, t) = 0$

Using
$$m_o(t) = a + bt$$
, we have $\frac{5}{4} = a + \frac{1}{2}b$, $\frac{21}{5} = \frac{1}{2}a + b \implies a = 0.2, b = 2.1$

(c) The minimum value of F is

$$||x - m_o||^2 = (x - m_o, x - m_o) = (x - m_o, x) = ||x||^2 - (m_o, x) = ||x||^2 - ||m_o||^2$$

where
$$||x||^2 = \frac{129}{7}$$
 and $||m_o||^2 = 14.61 \implies \min_{m \in M} F(m) = F(m_o) = 3.8187$

28. Here the space $L_2[-1,2]$ is replaced by the same with only the inner product different:

$$(x,y)_2 = \int_{-1}^2 t^2 x(t) y(t) dt$$

This is also a Hilbert space (say, H), and M as defined above is a closed subspace of H. Projection Theorem again applies, leading to existence of a unique solution. We again have to solve for a and b from the two relationships:

$$x - m_o \perp 1 \implies (t^3 - m_o, 1)_2 = 0$$
 and $x - m_o \perp t \implies (t^3 - m_o, t)_2 = 0$

Substituting for $m_o(t) = a + bt$, and solving for a and b: a = 0.03361, b = 2.773.

We have
$$||x||^2 = ||t^3||^2 = 56.778$$
 and $||m_o||^2 = 51.547$

and hence the minimum value of *F* is: $F(m_o) = ||x||^2 - ||m_o||^2 = 5.543$.

29. Let $y(t) = x(t)\sqrt{t}$. Then, the problem is equivalent to one of minimizing $||y||^2$ over $H = L_2[1,2]$, subject to: $(y,t^{-\frac{1}{6}}) = 1$ and $(y,t^{\frac{1}{6}}) = -1$, where the inner product (\cdot,\cdot) is the standard one on H.

Let Z be the closed subspace of H generated by $\{t^{-\frac{1}{6}}, t^{\frac{1}{6}}\}$. Then, $H = Z \oplus Z^{\perp}$, and hence any $y \in H$ admits the unique additive decomposition y = z + m, where $z \in Z$ and $m \in M := Z^{\perp}$. The constraints can then be written as $(z, t^{-\frac{1}{6}}) = 1$ and $(z, t^{\frac{1}{6}}) = -1$., and the functional to be minized is $||z||^2 + ||m||^2$ (since $m \perp z$). But, since Z is two-dimensional (because $t^{-\frac{1}{6}}$ and $t^{\frac{1}{6}}$ are linearly independent), and we have two linearly independent constraints, the choice of an element out of Z that satisfies both constraints is unique. Letting $y(t) = at^{-\frac{1}{6}} + bt^{\frac{1}{6}}$, and solving for a and b, we have a = 486.3295, b = -427.5050. Hence, the unique solution to the optimization problem is (in view of the relationship $x(t) = y(t)/\sqrt{t}$:

$$x^{o}(t) = 486.3295 t^{-\frac{2}{3}} - 427.5050 t^{-\frac{1}{3}}$$

30. Choose the Hilbert space $H = \mathbb{R}^n$, with the inner product $(x, y) = x^T Q y$, where Q > 0 (positive definite).

Let $A^T = [a_1, a_2, \dots, a_m]$, $b^T = [b_1, b_2, \dots, b_m]$, where a_i 's are vectors and b_j 's are scalars. Further assume that a_1, \dots, a_m are linearly independent in \mathbb{R}^n , which is equivalent to saying that rank (A) = m.

Then, the constraint equation Ax = b can be written as

$$a_i^T x = b_i, \quad i = 1, \dots, m$$

 $\Leftrightarrow (x, \tilde{a}_i) = b_i, \quad i = 1, \dots, m$

where $\tilde{a}_i = Q^{-1}a_i$.

Note that since det $Q^{-1} \neq 0$, $\{\tilde{a}_i\}_{i=1}^m$ is also a linearly independent set.

Hence, our optimization problem is

minimize
$$||x||$$
 subject to $(x, \tilde{a}_i) = b_i, i = 1, \dots, m$.

Applying Thm 2 (p. 65, Luenberger), which was discussed in class, we know that the solution is unique, and is given by

$$x_0 = \sum_{i=1}^m \lambda_i \tilde{a}_i = Q^{-1} A^T \lambda$$

where the $\tilde{a}_{i}'s$ satisfy

$$\underbrace{\begin{bmatrix}
(\tilde{a}_{1}, \tilde{a}_{1}) & (\tilde{a}_{2}, \tilde{a}_{1}) & \cdots & (\tilde{a}_{m}, \tilde{a}_{1}) \\
\vdots & & & & \\
(\tilde{a}_{1}, \tilde{a}_{m}) & \cdots & \cdots & (\tilde{a}_{m}, \tilde{a}_{m})
\end{bmatrix}}_{G} \underbrace{\begin{bmatrix}
\lambda_{1} \\
\vdots \\
\lambda_{m}
\end{bmatrix}}_{\lambda} = \underbrace{\begin{bmatrix}
b_{1} \\
\vdots \\
b_{m}
\end{bmatrix}}_{b}.$$

The matrix G can easily be shown to be $G = AQ^{-1}A^{T}$, which is nonsingular because of the linear independence of columns of A^{T} . Then, λ is uniquely solved to yield

$$\lambda = G^{-1}b = (AQ^{-1}A^T)^{-1}b$$

and substituting this into the expression for x_0 , we obtain:

$$x_0 = Q^{-1}A^T(AQ^{-1}A^T)^{-1}b$$
 \Rightarrow unique solution.

For those of you who have taken ECE 490, or are familiar with the contents of any nonlinear programming course, the parameter vector λ obtained above is the Lagrange multiplier, and the problem solved is the "quadratic programming problem with linear equality constraints".

If A is not a full rank matrix, but the linear constraints are still consistent (compatible), then one reduces the number of equations by eliminating the redundant ones and arrive at a new matrix A which is now of full rank. Then, this new A would be used in the solution given above.

31. Let Q be the space of polynomials on [a,b], of degree n or less, and P be a subset of Q, consisting of elements, p, of Q, which further satisfy the constraint

$$(p,1) = \int_a^b p(t) dt = 0,$$

that is, are orthogonal to the constant 1. Clearly, both Q and P are closed subspaces of $L_2[a,b]$, and P is further a subspace of Q. By the Projection Theorem, both minimization problems

$$\min_{p \in P} \|x - p\| \quad \text{and} \quad \min_{q \in Q} \|x - q\|$$

admit unique solutions, say p^o and q^o , respectively. Furthermore, $x-p^o \perp P$ and $x-q^o \perp Q$, and p^o and q^o are the unique elements of P and Q, respectively, that satisfy these orthogonality relationships. By the same reasoning, the minimization problem $\min_{p \in P} ||q^o - p||$ also admits a unique solution; let us denote it by \hat{p} , and note that $q^o - \hat{p} \perp P$, with this relationship again satisfied uniquely by \hat{p} . Now, for any $p \in P$:

$$(x - \hat{p}, p) = (x - q^{o} + q^{o} - \hat{p}, p) = (x - q^{o}, p) + (q^{o} - \hat{p}, p) = 0$$

where the last result follows because $q^o - \hat{p} \perp P$, and $x - q^o \perp Q \implies x - q^o \perp P \subset Q$. But since p^o was the unique vector with the property $x - p^o \perp P$, it follows that $\hat{p} = p^o$.

32. *i*) Let $Y = \overline{[y_1, \dots, y_n]}$. Write $x \in X$ as $x = x_y + x^{\perp}$ where $x_y \in Y$, $x^{\perp} \in Y^{\perp}$. Then, because of orthogonality, $||x||^2 = ||x_y + x^{\perp}||^2 = ||x_y||^2 + ||x^{\perp}||^2$. Let $K = \{k \in Y : (k, y_i) \ge c_i\}$. Then, since $(x_y + x^{\perp}, y_i) = (x_y, y_i)$,

$$\inf_{\substack{x \in X \\ \ni (x, y_i) \ge c_i \\ i = 1, \dots, n}} \|x\|^2 = \inf_{k \in K} \|k\|^2$$

K is closed (because of \geq) and convex (because (k, y_i) is a linear functional). Hence, what we have is a problem of *minimum distance to a convex set in a Hilbert space*. Thm 1 (p. 69 of Luenberger) applies with $x = \theta$, to ensure that \exists a unique $k_0 \in K$ satisfying $\inf_{k \in K} ||k|| = ||k_0||$ and the solution is characterized by

$$(k_0, k_0 - k) \le 0 \qquad \forall k \in K \tag{1}$$

where k_0 can be written as

$$k_0 = \sum_{i=1}^n a_i y_i \text{ for some } a_1, \dots, a_n.$$
 (2)

ii) First note that, for $k_0 = \sum_{j=1}^n a_j y_j \in K$, we have $(k_0, y_i) \ge c_i \Rightarrow \sum_{j=1}^n a_j (y_j, y_i) \ge c_i \Rightarrow$

$$G^T a \ge c$$

where G is the Gram matrix, $c := (c_1, c_2, \dots, c_n)^T$ and $a := (a_1, \dots, a_n)^T$. Now we have to show that $a \ge \theta$. Toward this end, first note that for any fixed j, we can find a vector z_j such that

$$(z_j, y_j) > 0$$
 and $z_j \perp \overline{[y_1, y_2, \dots, y_{j-1}, y_{j+1}, \dots, y_n]}$

Choosing
$$k = k_0 + z_j$$
, clearly $(k, y_i) = (k_0, y_i) + \underbrace{(z_j, y_i)}_{>0} \ge \underbrace{(k_0, y_i)}_{\geq c_i} \Rightarrow k \in K$.

Using this k in (1), we obtain $-(k_0, z_j) \le 0 \Rightarrow \sum_{i=1}^n a_i(y_i, z_j) \ge 0 \Rightarrow a_j(y_j, z_j) \ge 0$. Since $(y_j, z_j) > 0$ by construction, this says that a_j cannot be negative, and since j was arbitrary,

$$a \ge \theta$$

Now we prove the last part, i.e., $(k_0, y_i) > c_i \Rightarrow a_i = 0$. Since $\{y_j\}_{j=1}^n$ is a linearly independent set,

$$\exists z_i \text{ such that } z_i \perp \overline{[y_1, \dots, y_{i-1}, y_{i+1}, \dots, y_n]} \text{ and } (z_i, y_i) = -\epsilon < 0.$$

Let $k = k_0 + z_i$, which belongs to K if ϵ is sufficiently small, since $(k_0, y_i) > c_i$. Now, using this k in (1), we obtain

$$(k_0, -z_i) \le 0 \Rightarrow \sum_{j=1}^n a_j(y_j, z_i) \ge 0 \Leftrightarrow a_i(\underline{y_i, z_i}) \ge 0.$$

Since $a_i \geq 0$, this is possible only if $a_i = 0$. Hence,

$$a_i = 0 \text{ if } (k_0, y_i) > c_i$$