Notes On

HILBERT SPACE OF STOCHASTIC PROCESSES

Filtering, Prediction, and Smoothing

Stochastic processes, defined over a continuous time interval, say [0,1], are parametrized random variables (parametrized in the time variable t). Denoting a (scalar) stochastic process by $X(t,\omega)$, we have for each $t \in [0,1]$ a random variable defined on the probability space $(\Omega, \mathcal{F}, \mathcal{P})$, and for each $\omega \in \Omega$ a square-integrable function on [0,1], that is an element of the Hilbert space $L_2[0,1]$. Collecting all this together, we can view a stochastic process, X, as a mapping from (Ω, \mathcal{F}) to $(L_2[0,1], \mathcal{B}_{L_2[0,1]})$, where $\mathcal{B}_{L_2[0,1]}$ is a sigma algebra of subsets of $L_2[0,1]$. Defining the inner product of any two such maps by

$$(X,Y) := E\left\{ \int_0^1 X(t,\omega)Y(t,\omega)dt \right\} \equiv \int_0^1 E\left\{ X(t,\omega)Y(t,\omega) \right\} dt, \qquad (o)$$

we generate a Hilbert space of all such stochastic processes on $(\Omega, \mathcal{F}, \mathcal{P})$, denoted by $H = L_2(\Omega, \mathcal{P}; L_2[0, 1])$. Note that the inner product (o) involves a composition of the inner product in the Hilbert space $L_2[0, 1]$ (for each fixed $\omega \in \Omega$), and the inner product in the Hilbert space $L_2(\Omega, \mathcal{P})$ (for each fixed $t \in T$), both of which were introduced in class. I now formulate and then discuss the solution to the counterpart for stochastic processes of the *linear least squares estimation* problem discussed in class for random variables.

Problem 1. Given $X \in H$ and an observed process $Y \in H$, find linear least squares estimate for X given Y. That is, find $\hat{X} \in M$, where M is a closed subspace of H, generated by square-integrable functions $K \in L_2([0,1] \times [0,1])$, defined as

$$M = \left\{ m : m(t, \omega) = \int_0^1 K(t, s) Y(s, \omega) \, ds \,, \, t \in [0, 1] \,, \, K \in L_2([0, 1] \times [0, 1]) \right\}, \tag{oo}$$

such that

$$||X - \hat{X}|| = \inf_{m \in M} ||X - m||,$$
 (*)

where the norm is the one induced by the inner product (o).

Solution and Analysis. For the problem formulated above to make sense, we first have to make sure that M in (oo) is a closed subspace of H. For this, it will be sufficient that every $m \in M$ is also in H (as by linearity, it is straightforward to see that $m_1, m_2 \in M$ implies that any linear combination is also in M). Now, note that

$$(m,m) = E\left\{ \int_0^1 dt \, |\int_0^1 K(t,s)Y(s,\omega)ds|^2 \right\}$$

$$\leq E\left\{ \int_0^1 dt \int_0^1 |K(t,s)|^2 ds \int_0^1 |Y(\tau,\omega)|^2 d\tau \right\}$$

$$= \int_0^1 dt \int_0^1 ds \, |K(t,s)|^2 \, (Y,Y) < \infty$$

where the inequality follows from Cauchy-Schwarz applied to elements of $L_2[0,1]$ with $\omega \in \Omega$ and $t \in [0,1]$ fixed, and boundedness of the last expression follows because $K \in L_2([0,1] \times [0,1])$ and $Y \in H$. Hence, all elements of M are bounded in the same norm as in H,

Now, coming back to the optimization problem (*), the standard *Projection Theorem* applies, and we are assured of existence of a solution, say \hat{X} , which is a projection of X onto M, that is $X - \hat{X} \perp M$. We can write \hat{X} as

$$\hat{X}(t,\omega) = \int_0^1 \hat{K}(t,s)Y(s,\omega)ds$$
, for some $\hat{K} \in L_2([0,1] \times [0,1])$.

Define

$$R_{YY}(t,s) := E\{Y(t,\omega)Y(s,\omega)\}$$
 and $R_{XY}(t,s) := E\{X(t,\omega)Y(s,\omega)\}$

where R_{YY} is the auto-correlation function of Y, and R_{XY} is the cross-correlation function of X and Y. Then, carrying out the condition $X - \hat{X} \perp M$, we have the following sequence of steps for all $K \in L_2([0,1] \times [0,1])$:

$$E\{\int_{0}^{1} X(t,\omega) dt \int_{0}^{1} K(t,s)Y(s,\omega) ds\} = E\{\int_{0}^{1} dt \int_{0}^{1} \hat{K}(t,\tau)Y(\tau,\omega) d\tau \int_{0}^{1} K(t,s)Y(s,\omega) ds\},$$

$$\iff \int_{0}^{1} dt \int_{0}^{1} ds K(t,s)R_{XY}(t,s) = \int_{0}^{1} dt \int_{0}^{1} ds \int_{0}^{1} d\tau \, \hat{K}(t,\tau)K(t,s)R_{YY}(\tau,s)$$

$$\iff \int_{0}^{1} dt \int_{0}^{1} ds K(t,s) \left[R_{XY}(t,s) - \int_{0}^{1} d\tau \, \hat{K}(t,\tau)R_{YY}(\tau,s)\right] = 0$$

and this last equality holds for all $K \in L_2([0,1] \times [0,1])$, if and only if \hat{K} solves what is inside the brackets with equality, that is

$$R_{XY}(t,s) = \int_0^1 \hat{K}(t,\tau) R_{YY}(\tau,s) \, d\tau$$
 (**)

By the Projection Theorem, there exists $\hat{K} \in L_2([0,1] \times [0,1])$ that solves (**). For uniqueness we need an additional condition on Y (which is the counterpart of the condition we had in the case of a sequence of random variables, $\{Y_1, Y_2, \ldots, Y_n\}$, discussed in class today (February 21st), which was that they had to be linearly independent). The condition is that the auto-correlation function of Y, $R_{YY}(t,s)$ is positive definite. This means that taking any partition $\{0 \le t_1 < t_2 < \ldots < t_n \le 1\}$ of the interval [0,1], the corresponding symmetric $n \times n$ matrix $R = \{R(t_i, t_j), i, j = 1, \ldots, n\}$ is positive definite, this holding for any n and any partitioning. This is equivalent to saying that each corresponding sequence of random variables $\{Y(t_i, \omega), i = 1, \ldots, n\}$, obtained by time-sampling Y, is a linearly independent set.

The following theorem summarizes the result (that is, the solution to Problem 1).

Theorem 1 (Smoothing). Consider Problem 1 formulated above, under the additional assumption that $R_{YY}(t,s)$ is positive definite over $[0,1] \times [0,1]$. Then, there is a unique \hat{X} that solves the problem, that is satisfying (*), which is given by

$$\hat{X}(t,\omega) = \int_0^1 \hat{K}(t,s)Y(s,\omega) \, ds \,,$$

where \hat{K} is the unique solution of (**) in $L_2([0,1] \times [0,1])$.

Note the qualifier "smoothing" in the label of the theorem, which corresponds to an estimation problem where the *linear least squares estimate* of the stochastic process X makes use of the entire path of the observation process Y for each time t (that is, the *past* as well as the *future*). Hence, in that sense the solution is not *causal*. Alternatives to this are *prediction* and *filtering* estimation problems which use only past values of Y in the estimation of X. A general class of such problems can be formulated as one of finding the *linear least squares estimate* for $X(t + \lambda, \omega)$, with $0 \le \lambda < 1$, using $\{Y(s, \omega), s \le t\}$, and doing this for each $t \le 1 - \lambda$. The counterpart of Problem 1 in this case would be the following; here $\lambda = 0$ corresponds to the *filtering* problem, and the estimation problem with $\lambda > 0$ is referred to as the λ -step ahead prediction.

Problem 2 (Prediction and Filtering). Given $X \in H$, an observed process $Y \in H$, and a fixed $\lambda \in [0,1)$, find, for each $t \in [0,1-\lambda)$, a linear least squares estimate for $X(t+\lambda,\omega)$ given $Y(s,\omega)$, $s \leq t$. That is, find $\hat{X}_{t+\lambda} \in M_t$, where M_t is a closed subspace of H, generated by square-integrable functions $K \in L_2([0,1] \times [0,1])$, defined as

$$M_t = \left\{ m : m(t, \omega) = \int_0^t K(t, s) Y(s, \omega) \, ds \,, \, t \in [0, 1] \,, \, K \in L_2([0, 1] \times [0, 1]) \right\}, \tag{ooo}$$

such that, for each t,

$$||X(t+\lambda) - \hat{X}(t+\lambda)|| = \inf_{m(t) \in M_t} ||X(t+\lambda) - m(t)||, \qquad (***)$$

where the norm is the one induced by the inner product in $L_2(\Omega, \mathcal{P})$.

Again by the *Projection Theorem*, we have, for each t, $X(t + \lambda, \omega) - \hat{X}(t + \lambda, \omega) \perp M_t$, which, following the steps in the solution of Problem 1, leads to the following result. [**Prove it!**].

Theorem 2 (Prediction and Filtering). Consider Problem 2 formulated above, under the additional assumption that $R_{YY}(t,s)$ is positive definite over $[0,1] \times [0,1]$. Then, there is a unique \hat{X} that solves the problem, that is satisfying (***), which is given by

$$\hat{X}(t+\lambda,\omega) = \int_0^t \hat{K}(t,s)Y(s,\omega) \, ds \,,$$

where \hat{K} is the unique solution of

$$R_{XY}(t+\lambda,s) = \int_0^t \hat{K}(t,\tau)R_{YY}(\tau,s) d\tau$$

for each $t \in [0, 1 - \lambda]$.

