April 4, 2019

ASSIGNMENT 7

Reading Assignment: Text: Chapter 6

Recommended Reading: Curtain & Pritchard: pp. 65-67, and Chapter 12;

Balakrishnan: pp. 62-80, and Chapter 2.

Advance Reading: Text: Chapter 7

Problems (to be handed in): Due Date: Thursday, April 11.

To be returned to Mr. Sayin (TA), by 11 am.

51. Let X be a Banach space, and Q a linear bounded operator mapping X into itself. Show that if the norm of Q is less than 1, the operator (I-Q) is invertible, and its inverse admits the infinite series representation

$$(I-Q)^{-1} = \sum_{n=0}^{\infty} Q^n$$

[This is known as the *Neumann* series.]

Hint: Use the Banach Contraction Mapping Theorem and the Proposition on page 147 of the text.

52. Let X be a Banach space, and $\|\cdot\|_1$ and $\|\cdot\|_2$ be two different norms on it. Suppose that there exists a constant α such that $\|x\|_1 \leq \alpha \|x\|_2$ for all $x \in X$. Show that there exists another constant, β , such that $\|x\|_2 \leq \beta \|x\|_1$ for all $x \in X$.

Hint: Use the Banach Inverse Theorem on page 149 of the text.

53. Let $X = L_p[0,2], \ 1 . Let <math>A \in B(X,Y)$ be defined by

$$A(x)(t) = \int_0^2 K(t,s) x(s) ds$$

where

$$\int_0^2 \int_0^2 |K(t,s)|^q dt ds < \infty$$

Find A^* , the adjoint of A.

54. Let x and y be two scalar second-order random variables on a common probability space $(\Omega, \mathcal{F}, \mathcal{P})$, admitting a joint probability density function (with respect to the Lebesgue measure) $f_{x,y}(\xi, \eta)$. Let the marginals for y and x be defined by

$$\int_{-\infty}^{\infty} f_{x,y}(\xi,\eta) \, d\xi =: f_2(\eta) \; ; \quad \int_{-\infty}^{\infty} f_{x,y}(\xi,\eta) \, d\eta =: f_1(\xi) \; .$$

Let H_i be the space of all Lebesgue-measurable mappings γ , with finite norm, where the norm is defined as follows:

$$\|\gamma\|_i := \left\{ \int_{-\infty}^{\infty} |\gamma(s)|^2 f_i(s) \, ds \right\}^{1/2}, \quad i = 1, 2.$$

Introduce a transformation $A: H_1 \to H_2$ by

$$A(\gamma)(\eta) = \int_{-\infty}^{\infty} \gamma(\xi) [f_{x,y}(\xi,\eta)/f_2(\eta)] d\xi.$$

- i) **Show** that A is linear and bounded.
- ii) Find the norm of A.
- iii) Obtain an expression for the adjoint of A, if the inner product on H_i is defined by

$$(\gamma, \beta)_i := \int_{-\infty}^{\infty} \gamma(\xi)\beta(\xi)f_i(\xi) d\xi, \quad i = 1, 2.$$

- **55.** Let H and G be two real Hilbert spaces, and $A: H \to G$ be a linear bounded operator. Let A^* denote the adjoint of A. **Prove or disprove** the following two statements:
 - i) "The operator norm of A^*A is equal to the square of the operator norm of A."
 - ii) "The operator norms of A^*A and AA^* are the same."
- **56.** Read section 6.11 of the text on "Pseudoinverse Operators" (also discussed in class), and solve the following problem: **Find** the pseudoinverse of the operator A on \mathbf{R}^3 defined by the matrix representation:

$$\begin{pmatrix}
1 & 2 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{pmatrix}$$

 \Diamond \Diamond