Correspondence # 18

March 25, 2019

ASSIGNMENT 6

Reading Assignment: Correspondence # 14. Text: Chapters 5.

Advance Reading: Text: Chapter 6.

Recommended Reading: Curtain & Pritchard: pp. 65-67, and Chapter 12;

Balakrishnan: pp. 62-80, and Chapter 2.

Problems (to be handed in): Due Date: Thursday, April 4.

The first three problems below are based on the material of Correspondence # 14.

46. Find a continuous function x_o that minimizes the functional

$$\int_0^2 |x(t)|^3 \, \mathrm{d}t$$

subject to the constraint

$$\int_0^2 t^2 x(t) \, \mathrm{d}t = 2 \; .$$

Identify the space(s) in which you work, and also indicate whether the solution you obtained is **unique** or not.

47. We wish to find a function x, satisfying the pointwise bound $|x(t)| \le 1$ (that is, $||x||_{\infty} \le 1$), and integral constraints

$$\int_0^T x(t) dt = -3 \quad \text{and} \quad \int_0^T t x(t) dt = 0$$

for the smallest possible T > 0.

(Hence, you have to find the optimum value of T, say T_o , and a corresponding x(t) on $[0, T_o]$.) Hint: Show that the problem can be reformulated as one of first minimizing $||x||_{\infty}$ subject to the given integral constraints and with T fixed (say this solution is x_T), and then finding the smallest value of T such that $||x_T||_{\infty} \leq 1$. Material in Section 5.9 of the Text could be useful here.

48. Find two functions x and y that minimize the functional

$$\int_0^1 \left[x^2(t) + y^2(t) \right]^{\frac{1}{2}} dt$$

while satisfying the equality constraints

$$\int_0^1 (1-t) x(t) dt = 1 \quad \text{and} \quad \int_0^1 (1-t) y(t) dt = \frac{3}{2}$$

Note: Part of the problem/question is to identify the space where the solution should be sought. See also Problem 7, page 138 of the Text.

- **49.** Let X be a Hilbert space, and $\{x_n\}$ be a sequence in X, converging weakly to $x^o \in X$.
 - i) Show that the convergence is also in the strong sense (that is in norm) if further the sequence of real numbers $\{\|x_n\|\}$ converges to the norm of x^o , $\|x^o\|$.
 - ii) Again for the original problem, show that one can find a subsequence $\{x_{n_k}\}$ such that the sequence of arithmetic means

$$y_m = \frac{1}{m} \sum_{k=1}^m x_{n_k}, \quad m = 1, 2, \dots$$

converges strongly to x^0 (that is, $||y_m - x^o|| \to 0$).

- **50.** Let X be a real normed linear space, and X^* be its dual.
 - i) Show that a linear functional f on X is weakly continuous if and only if it is of the form $f(x) = \langle x, x^* \rangle$, for some $x^* \in X^*$.
 - ii) Show that a linear functional g on X^* is weak* continuous if and only if it is of the form $g(x^*) = \langle x, x^* \rangle$, for some $x \in X$.

Hint: Use the result of Problem 45 of the previous set.

 \Diamond \Diamond