Correspondence # 13

March 7, 2019

ASSIGNMENT 5

Reading Assignment: Text: Chapter 5. Correspondence 12

Notice: This is the last homework assignment before the midterm exam, which is scheduled for Friday, March 15 (3:30 pm - 5:00 pm), in 141 CSL.

Problems (to be handed in): Due Date: Tuesday, March 12.

39. Let H be the Hilbert space of Lebesgue-measurable functions on $[0, \infty)$, endowed with the inner product

$$(x,y) = \int_0^\infty e^{-4t} x(t)y(t) dt, \quad x,y \in H.$$

Define a functional f on H by

$$f(x) = \int_0^\infty e^{-4t} \, dt \int_0^t K(t, s) \, x(s) \, ds$$

where K(t,s) is a square-integrable (so-called *Hilbert-Schmidt*) kernel on $[0,\infty)\times[0,\infty)$, that is

$$\int_0^\infty \int_0^\infty |K(t,s)|^2 dt ds < \infty.$$

- i) Show that f is linear and continuous.
- ii) Determine an element $y \in H$ such that f(x) = (x, y). Is the solution unique?
- **40.** Define a functional f on $L_4[0,3]$ by

$$f(x) = \int_0^3 dt \int_0^t K(t, s) x(s) ds$$

- i) Obtain tight conditions on the kernel $K(\cdot,\cdot)$ such that f is linear and continuous.
- ii) Assuming that K satisfies the condition(s) in (i) above, **determine** ||f||, the norm of f (in terms of K).
- iii) Now **compute** ||f|| when K(t, s) = t s. Note: $L_4[0, 3]$ is **not** a Hilbert space.
- **41.** Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space, and $L_2(\Omega, \mathcal{P}; L_2[0, 2])$ be the Hilbert space of second-order random processes defined on $[0, 2] \times \Omega$. Consider the mappings:

$$g: L_2(\Omega, \mathcal{P}; L_2[0,2]) \to L_2(\Omega, \mathcal{P}; \mathbf{R}); \quad f: L_2(\Omega, \mathcal{P}; \mathbf{R}) \to \mathbf{R}$$

defined by

$$g(x) = \int_0^2 b(t) x(t; \omega) dt, \ b \in L_2[0, 2]; \ f(y) = E[y].$$

Let h be the composite mapping $f \circ g : L_2(\Omega, \mathcal{P}; L_2[0,2]) \to \mathbf{R}$.

- i) Show that both f and h are bounded linear functionals.
- ii) If (\cdot, \cdot) and (\cdot, \cdot) denote the natural inner products on $L_2(\Omega, \mathcal{P}; \mathbf{R})$ and $L_2(\Omega, \mathcal{P}; L_2[0, 2])$, respectively, find elements \bar{y} and \bar{x} in these respective spaces so that

$$f(y) = (y, \bar{y}), \quad h(x) = \langle x, \bar{x} \rangle.$$

42. Let X = C[0,1] with the standard maximum norm, and $f \in X^*$ be defined by

$$f(x) = 2x(1/3) + 3x(1/2) + 4\int_0^1 tx(t) dt$$

- i) Compute ||f||, the norm of f.
- ii) Obtain a function of bounded variation on [0,1], say $v(\cdot)$, such that v(0)=0 and

$$f(x) = \int_0^1 x(t) \, dv(t)$$

43. Let $\mathbf{c_0}$ be the space of all infinite sequences of real numbers converging to *zero*, endowed with the *max* norm. Let $x = \{\xi_i\}$ be a fixed element of $\mathbf{c_0}$, given by

$$\xi_i = \begin{cases} -1 & i = 1\\ 2/i & i \ge 2 \end{cases}$$

i) Find a linear functional, f, on c_0 , of unit norm, such that f(x) = ||x||. Is the solution unique?

(Note: A linear functional f is said to be **aligned** with x if $f(x) = ||f|| \cdot ||x||$. Hence, here we are looking for an f with unit norm, which is aligned with x.)

ii) Find an element g of $\mathbf{c_0}^*$, the normed dual of $\mathbf{c_0}$, such that g has unit norm and g(x) = 0. Is the solution **unique**?

(Note: The property g(x) = 0 is known as the linear functional g being **orthogonal** to x.)

44. Let x be a continuous function on [0,3], given by

$$x(t) = \begin{cases} 2 & 0 \le t \le 1/2 \\ 4 - 4t & 1/2 \le t \le 3/2 \\ 4t - 8 & 3/2 \le t \le 5/2 \\ 2 & 5/2 \le t \le 3 \end{cases}$$

Letting X = C[0,3], find two linear functionals, $x^* \in X^*$ and $y^* \in X^*$, both of unit norm, such that x^* is **aligned** with x, and y^* is **orthogonal** to x. Are the solutions **unique**?

45. Let g_1, g_2, \ldots, g_n be linearly independent linear functionals on a vector space X. Let f be another linear functional on X such that for every $x \in X$ satisfying $g_i(x) = 0$, $i = 1, 2, \ldots, n$, we have f(x) = 0. Show that there exist constants $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that

$$f = \sum_{i=1}^{n} \lambda_i g_i.$$

Hint: Use the Hahn-Banach Theorem (extension form; Correspondence 12).

 \Diamond \Diamond \Diamond