ECE 580 SPRING 2019

Correspondence # 9

ASSIGNMENT 4

Reading Assignment: Text: Chapter 4. Correspondence 10

Suggested Reading: Curtain & Pritchard: Chp 5 (pp. 75-84).

Review probability theory and stochastic processes from any

February 19, 2019

(graduate) text of your choice.

Notice: On February 28, we will start class at 9:30 am

Problems (to be handed in): Due Date: Thursday, February 28.

This first problem of this set is related to the topic of "wavelets" (which I briefly introduced in class), but no prior knowledge of wavelets is necessary to solve it.

33. Let J be an index set, and $\{\xi_j\}_{j\in J}$ a family of functions in a (complex) Hilbert space H. This family is called a *frame* if there exist constants A>0, $B<\infty$ such that for all $f\in H$,

$$A \|f\|^2 \le \sum_{j \in J} |(f, \xi_j)|^2 \le B \|f\|^2$$

Here A and B are called frame bounds. If A = B, then the frame is said to be a tight frame. (Note that the family $\{\xi_j\}_{j\in J}$ is not necessarily orthogonal, or even linearly independent.)

i) Show that if the family $\{\xi_j\}_{j\in J}$ constitutes a tight frame, then

$$f = A^{-1} \sum_{j \in J} (f, \xi_j) \, \xi_j$$

Hint: First verify the following identity in H, which will prove useful in establishing the desired result: For any $f, g \in H$:

$$4(f,g) = \|f + g\|^2 - \|f - g\|^2 + i\|f + ig\|^2 - i\|f - ig\|^2$$

ii) To show that it is possible for $\{\xi_j\}_{j\in J}$ to be a tight frame, without being orthogonal or linearly independent, consider the following (counter-)example:

$$H = \mathbf{C}^2, \quad \xi_1 = (0, 1)^T, \quad \xi_2 = (-\frac{\sqrt{3}}{2}, -\frac{1}{2})^T, \quad \xi_3 = (\frac{\sqrt{3}}{2}, -\frac{1}{2})^T$$

Show that the triplet $\{\xi_1, \xi_2, \xi_3\}$ does indeed constitute a tight frame. What is the frame bound A?

iii) Prove that, again for the general case, if $\{\xi_j\}_{j\in J}$ is a tight frame, with frame bound A=1, and if $\|\xi_j\|=1 \ \forall j\in J$, then the ξ_j 's constitute an orthonormal basis for H.

The remaining problems in this set are all on the topic of Hilbert Spaces of Random Variables and Stochastic Processes.

34. Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space, and $L_2(\Omega, \mathcal{P}; \mathbf{R}^n)$ be the Hilbert space of second-order random vectors (of dimension n) defined on $(\Omega, \mathcal{F}, \mathcal{P})$, with inner product

$$(x,z) = E[x^T Q z]$$

where Q is a given (fixed) positive-definite matrix of dimension $n \times n$. Let $\{y_0, \ldots, y_i\}$ be m-dimensional random vectors defined on $(\Omega, \mathcal{F}, \mathcal{P})$, which are uncorrelated and have zero mean. Let \mathcal{M}_{nm} be the class of all $n \times m$ matrices with bounded entries, and consider the following optimization problem for a given $x \in L_2(\Omega, \mathcal{P}; \mathbf{R}^n)$:

$$||x - \sum_{j=0}^{i} \hat{K}_j y_j|| = \inf_{K_j \in \mathcal{M}_{nm}} ||x - \sum_{j=0}^{i} K_j y_j||.$$

- i) Solve for the optimal \hat{K}_j , j = 0, ..., i. Is the solution unique?
- ii) Let $\epsilon_k = \|x \sum_{j=0}^k \hat{K}_j y_j\|^2$, and obtain a recursive (linear first-order difference) equation for ϵ_k .
- **35.** Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space, and x, y_1, y_2 three zero-mean second-order random variables defined on this space, with y_1 and y_2 uncorrelated. Let \mathcal{Z} be the class of random variables $z = a_1y_1 + a_2y_2$, where the coefficients a_1 and a_2 are restricted to be nonnegative (that is, $a_1 \geq 0, a_2 \geq 0$). We seek a best approximation to x in \mathcal{Z} in the minimum mean square sense, that is an $\hat{x} \in \mathcal{Z}$ such that

$$\inf_{z \in \mathcal{Z}} E[(x-z)^2] = E[(x-\hat{x})^2]$$

- i) Formulate this problem as one of minimum distance to a convex set in a Hilbert space.
- ii) Does there exist a unique solution? Justify your answer.
- iii) Compute \hat{x} and $E[(x-\hat{x})^2]$ when

$$E[(y_1)^2] = E[(y_2)^2] = E[x^2] = 1$$
, $E[y_1x] = 0.2$, $E[y_2x] = -0.5$.

36. Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space, and y a random variable on it, with E[y] = 1 and $E[y^2] = 2$. We wish to find another random variable, x, on the same probability space, with **minimum second moment**, and satisfying the constraints E[xy] = 2 and E[x] = -1.

- i) Does this problem admit a solution? Is it unique? Justify your answers.
- ii) Obtain the solution if it exists.
- iii) What would the solution be if the second equality constraint is replaced by the inequality constraint: $E[x] \ge -1$
- **37.** Let Y_1 and Y_2 be uncorrelated second-order random variables defined on a given probability space $(\Omega, \mathcal{F}, \mathcal{P})$. Let $L_2(\Omega, \mathcal{F}; C[0, 1])$ be the space of all parametrized (in t) random variables (equivalently, stochastic processes) $X(t; \omega)$, where for fixed $t \in [0, 1], X(t; \cdot)$ is a second-order random variable on $(\Omega, \mathcal{F}, \mathcal{P})$ and for fixed $\omega \in \Omega, X(\cdot; \omega) \in C[0, 1]$. Define the inner product on $L_2(\Omega, \mathcal{F}; C[0, 1])$ by

$$(X,Z) = E\left[\int_0^1 X(t;\omega) Z(t;\omega) w(t) dt\right];$$

where $w(\cdot) > 0$ is in C[0,1]. Determine a stochastic process $\widehat{X}(t;\omega) \in L_2(\Omega,\mathcal{F};C[0,1])$ which has **minimum norm** and satisfies the equalities:

$$E\left[\int_0^1 \widehat{X}(t;\omega) k_i(t) Y_i(\omega) dt\right] = c_i, \quad i = 1, 2,$$

where k_1 , k_2 are linearly independent elements out of C[0,1], and c_1 , c_2 are given constants.

38. Let X be a second-order random variable defined on a given probability space $(\Omega, \mathcal{F}, \mathcal{P})$, and $Y(t;\omega)$ be a second-order stochastic process defined on the same probability space, with $t \in [0,2]$, which is correlated with X, with the cross-correlation function given by $R_{XY}(t) = E[XY(t)]$. Further let $R_{YY}(t,s)$ denote the auto-correlation function of Y. We are interested in finding a linear least squares (l.l.s.) estimate of X given the measurement process $Y(t;\omega)$ over the interval [0,2], that is an estimate in the form

$$m(\omega) = \int_0^2 K(t)Y(t;\omega) dt$$

for some function $K(\cdot)$.

- i) Show that there exists a unique such l.l.s. estimate, and obtain the equation satisfied by a corresponding optimum $K(\cdot)$ in terms of R_{XY} and R_{YY} . Under what conditions is the optimum $K(\cdot)$ unique?
- ii) Redo (i) above when $K(\cdot)$ is restricted to be a constant (independent of time).

 \Diamond \Diamond \Diamond